Java™ Platform, Enterprise Edition
(Java EE) Specification, v6

Please send comments to: javaee-spec-feedback @sun.com

Final Release - 11/6/09 Roberto Chinnici, Bill Shannon

Sun

microsystems
We make the net work.

Final Release

Specification: JSR-000316 Java Platform, Enterprise Edition 6 Specification (" Specification")
Version: 6.0

Status: Final Release

Release: 10 December 2009

Copyright 2009 SUN MICROSY STEMS, INC.
4150 Network Circle, Santa Clara, Caifornia 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transferable,
worldwide, limited license (without the right to sublicense), under Sun's applicable intellectua property
rights to view, download, use and reproduce the Specification only for the purpose of internal evaluation.
Thisincludes (i) developing applicationsintended to run on an implementation of the Specification, provided
that such applications do not themselves implement any portion(s) of the Specification, and (ii) discussing
the Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or written
communications which discuss the Specification provided that such excerpts do not in the aggregate consti-
tute asignificant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-exclu-
sive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights or, subject to the provisions of subsection 4 below, patent rights it may have
covering the Specification to create and/or distribute an Independent Implementation of the Specification
that: (a) fully implements the Specification including all its required interfaces and functionality; (b) does not
modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected
packages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those
required/authorized by the Specification or Specifications being implemented; and (c) passes the Technology
Compatibility Kit (including satisfying the requirements of the applicable TCK Users Guide) for such Speci-
fication ("Compliant Implementation™). In addition, the foregoing license is expressy conditioned on your
not acting outside its scope. No license is granted hereunder for any other purpose (including, for example,
modifying the Specification, other than to the extent of your fair use rights, or distributing the Specification
to third parties). Also, noright, title, or interest in or to any trademarks, service marks, or trade names of Sun
or Sun's licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (8)-(c) from the previous paragraph or any
other particular "pass through" requirements in any license You grant concerning the use of your Indepen-
dent Implementation or products derived from it. However, except with respect to Independent |mplementa-
tions (and products derived from them) that satisfy limitations (a)-(c) from the previous paragraph, You may
neither: (a) grant or otherwise pass through to your licensees any licenses under Sun's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning their implementation's com-
pliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would
be infringed by al technicaly feasible implementations of the Specification, such license is conditioned

upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it from You, a per-
petua, non-exclusive, non-transferable, worldwide license under Your patent rights which are or would be
infringed by all technically feasible implementations of the Specification to develop, distribute and use a
Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2,
whether or not their infringement can be avoided in a technically feasible manner when implementing the
Specification, such license shall terminate with respect to such claimsif You initiate a claim against Sun that
it has, in the course of performing its responsibilities as the Specification Lead, induced any other entity to
infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and covered by the license granted under subpara-
graph 2 above, where the infringement of such claims can be avoided in atechnically feasible manner when
implementing the Specification such license, with respect to such claims, shall terminate if You initiate a
claim against Sun that its making, having made, using, offering to sell, selling or importing a Compliant
Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation” shall mean an implemen-
tation of the Specification that neither derives from any of Sun's source code or binary code materials nor,
except with an appropriate and separate license from Sun, includes any of Sun's source code or binary code
materials; "Licensor Name Space" shall mean the public class or interface declarations whose names begin
with "java’, "javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun
through the Java Community Process, or any recognized successors or replacements thereof; and "Technol -
ogy Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide provided by
Sun which corresponds to the Specification and that was available either (i) from Sun 120 days before the
first release of Your Independent Implementation that alows its use for commercia purposes, or (ii) more
recently than 120 days from such release but against which You elect to test Your implementation of the
Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act out-
side the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS'. SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
(INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECI-
FICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PUR-
POSE. This document does not represent any commitment to release or implement any portion of the
Specification in any product. In addition, the Specification could include technical inaccuracies or typo-
graphical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING

Fina Release

USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to you
are incompatible with the Specification provided to you under thislicense.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by aU.S.
Government prime contractor or subcontractor (at any tier), then the Government'srightsin the Software and
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.FR.
227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.FR. 2.101 and
12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidentia basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federa law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will

not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulationsin
other countries. Licensee agreesto comply strictly with al such laws and regulations and acknowledges that
it has the responsibility to obtain such licenses to export, re-export or import as may be required after deliv-
ery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or con-
temporaneous oral or written communications, proposals, conditions, representations and warranties and pre-
vails over any conflicting or additional terms of any quote, order, acknowledgment, or other communication
between the parties relating to its subject matter during the term of this Agreement. No modification to this
Agreement will be binding, unlessin writing and signed by an authorized representative of each party.

Rev. April, 2006

Vi

Final Release

Contents

Java™ Platform, Enterprise Edition (JavaEE) Specification,

VB e e e [
EE.1 Introduction. A
EE.1.1 Acknowledgements i 2
EE.1.2 Acknowledgementsfor Version1.3...................... 2
EE.1.3 Acknowledgementsfor Version1.4...................... 3
EE.1.4 Acknowledgementsfor Version5 3
EE.1.5 Acknowledgementsfor Version6 4
EE.2 Platform Overview............... 5
EE.2.1 Architecture 5
EE.2.2 Profiles 6
EE.2.3 Application Componentsovuiiineennennann. 8
EE.2.3.1 Java EE Server Support for Application Components . 9

EE.2.4 CONtAINENS. . . ottt 9
EE.24.1 Container Requirements 10

EE.24.2 JawvaEEServers. 10

EE.2.5 Resource Adapterst 10
EE.2.6 Database 11
EE.2.7 JavaEE Standard Services. 11
EE.2.7.1 HTTP. . e 11

EE.2.7.2 HTTPS. ... 11

EE.2.7.3 Java™ Transaction APl (JTA) ..o 11

EE.2.7.4 RMI-HIOP . e 12

EE.2.7.5 JavalDL 12

EE.2.7.6 JDBC™ APl ... 12

Vii

viii

EE.2.7.7 Java™ Persistence APl 13
EE.2.7.8 Java™ Message Service (IMS). 13
EE.2.7.9 Java Naming and Directory Interface™ (INDI) 13
EE.2.7.10 JavaMail™ . e 13
EE.2.7.11 JavaBeans™ Activation Framework (JAF)......... 14
EE27.12 XML ProCessiNgovviiiieiieiieiieennn 14
EE.2.7.13 JavaEE™ Connector Architecture............... 14
EE.2.7.14 Security SErViCes.cuvviiiiinennnnn.. 15
EE27.15 WebServices. i 15
EE2.7.16 Management 16
EE2.7.17 Deployment......... ... 16
EE.2.8 Interoperability i 17
EE.2.9 Flexibility of Product Requirements 18
EE.2.10 JavaEE Product Extensions. 18
EE2.11 PlatformRoles.......... 19
EE.2.11.1 JavaEEProduct Provider 19
EE.2.11.2 Application Component Provider 20
EE.211.3 ApplicationAssembler 20
EE211.4 Deployer ... 20
EE.2.11.5 System Administrator 21
EE.211.6 Tool Provider............. ... 21
EE.2.11.7 System Component Provider. 21
EE.2.12 PlatformContractsoiiiiii i 22
EE2121 JavaEEAPIS. 22
EE.2.12.2 JavaEE Service Provider Interfaces (SPIs) 22
EE.2.123 Network Protocols. 23
EE.2.124 Deployment Descriptors and Annotations 23
EE.213 ChangesinJ2EE1.3.. i 23
EE2.14 ChangeSinJ2EE L4,, 24
EE.2.15 ChangesinJavaEES............... 24
EE.216 ChangesinJavaEEG.........., 26
EE.3 SECUMtY . ..o 27
EE.3.1 Introduction 27
EE.3.2 ASmpleExample. ... 28
EE.3.3 Security Architecture 31
EE.3.3.1 GoaAlS . .t 31
EE.3.3.2 NONGOalS. ..o 32
EE.3.3.3 Terminologyoviiii i 33

Final Release

EE.3.34 Container Based Security 34
EE.3.3.5 Distributed Security. i 35
EE.3.3.6 AuthorizationModdl 36
EE.3.3.7 HTTPLoginGatewaysSvvviveneannn. 37
EE.3.3.8 User Authentication. 37
EE.3.3.9 Lazy Authentication 40
EE.3.4 User Authentication Requirements. 40
EE.3.4.1 LOginSessioNs.o 40
EE.3.4.2 Required Login Mechanisms. 41
EE.3.4.3 Unauthenticated Users.cooiivinn. .. 42
EE.3.4.4 Application Client User Authentication 43
EE.3.4.5 Resource Authentication Requirements 44
EE.3.5 Authorization Requirements. 45
EE.35.1 Code Authorization............t 45
EE.3.5.2 Caller Authorization 46
EE.3.5.3 Propagated Caller Identities. 46
EE.3.5.4 RunAsldentities. 46
EE.3.6 Deployment Requirements., 47
EE.3.7 FutureDirectionsottt 47
EE.3.7.1 Auditing. 47
EE.3.7.2 Instance-based AccessControl 48
EE.3.7.3 User Registration.coovviinninenn.. 48
EE.4 Transaction Management. ... 49
EEA4.1 OVEIVI B oo e e 49
EE.4.2 Requirementsot e 51
EE4.2.1 WebComponentscoiiiinan... 51
EE.4.2.2 Transactionsin Web Component Life Cycles. 53
EE.4.2.3 Transactionsand Threads 53
EE.4.24 Enterprise JavaBeans™ Components. 54
EE.4.2.5 ApplicationClients, 54
EE.4.2.6 AppletClientst 54
EE.4.2.7 Transactional JDBC™ Technology Support. 54
EE.4.2.8 Transactional IMSSupport 55
EE.4.2.9 Transactional Resource Adapter (Connector) Support 55
EE.4.3 Transaction Interoperability 56
EE.4.3.1 Multiple Java EE Platform Interoperability 56
EE.4.3.2 Support for Transactional Resource Managers. 56
EE.4.4 Local Transaction Optimization........................ 56

EE.44.1 Requirements., 56

EE.4.4.2 A PossibleDesign. ..., 57

EE.4.5 Connection Sharingoouuieii e 58
EE.4.6 JDBC and IMS Deployment Issues. 58
EE.4.7 Two-Phase Commit Support ..., 59
EE.4.8 System Administration Tools. 60
EE.5 Resources, Naming, and Injection61
EE.5.1 OVEIVIBW .ot e e 61
EE.5.1.1 Chapter Organizationc..... 62
EE.5.1.2 Required Access to the INDI Naming Environment. . 63
EE.5.2 JNDI Naming Contextc.oviiiiinnnnen.. 63
EE.5.2.1 The Application Component’s Environment 64
EE.5.2.2 Application Component Environment Namespaces . . 65
EE.5.2.3 Accessibility of Environment Entry Types......... 66
EE.5.2.4 Sharing of Environment Entries 67
EE.5.2.5 Annotationsand Injection. 67
EE.5.2.6 Annotations and Deployment Descriptors 71
EE.5.2.7 Other Naming Context Entries 72
EE.5.3 Responsibilitiesby JavaEERole. 72
EE.5.3.1 Application Component Provider’s Responsibilities . 73
EE.5.3.2 Application Assembler’ s Responsibilities. 73
EE.5.3.3 Deployer's Responsibilities. 73
EE.5.3.4 Java EE Product Provider’s Responsibilities 74
EE.5.4 Simple Environment Entries. 75
EE.54.1 Application Component Provider’s Responsibilities . 75
EE.5.5 Enterprise JavaBeans™ (EJB) References. 81
EE.55.1 Application Component Provider’s Responsibilities . 82
EE.5.5.2 Application Assembler’s Responsibilities. 85
EE.5.5.3 Deployer's Responsibilities. 88
EE.554 Java EE Product Provider’s Responsibilities 88
EE.5.6 Web ServiceReferences. L 89
EE.5.7 Resource Manager Connection Factory References. 89
EE.5.7.1 Application Component Provider’s Responsibilities . 89
EE.5.7.2 Deployer's Responsibilities. 95
EE.5.7.3 Java EE Product Provider’s Responsibilities 96
EE.5.7.4 System Administrator’s Responsibilities 97
EE.5.8 Resource Environment References. 98
EE.5.8.1 Application Component Provider’s Responsibilities . 98
EE.5.8.2 Deployer’s Responsibilities. 100

Final Release

EE.5.8.3 Java EE Product Provider’'s Responsibilities 100

EE.5.9 Message Destination Referencest 100
EE.5.9.1 Application Component Provider’s Responsibilities 101
EE.5.9.2 Application Assembler’s Responsihilities. 104
EE.5.9.3 Deployer’s Responsibilities. 105
EE.5.94 Java EE Product Provider’s Responsihilities 106

EE.5.10 UserTransaction References.covvun.t. 106
EE.5.10.1 Application Component Provider’s Responsibilities 108
EE.5.10.2 JavaEE Product Provider’s Responsibilities 108

EE.5.11 TransactionSynchronizationRegistry References. 108
EE.5.11.1 Application Component Provider's Responsibilities 109
EE.5.11.2 JavaEE Product Provider’s Responsibilities 109

EE512 ORBREfErenCeS.ot 109
EE.5.12.1 Application Component Provider’s Responsibilities 110
EE.5.12.2 JavaEE Product Provider’s Responsibilities 111

EE.5.13 PersistenceUnitReferences............ 111
EE.5.13.1 Application Component Provider's Responsibilities 111
EE5.132 Application Assembler’s Responsibilities114
EE.5.13.3 Deployer'sResponsibility 115
EE.5.13.4 JavaEE Product Provider’s Responsibility. 116
EE.5.135 System Administrator’s Responsibility........... 116

EE.5.14 Persistence Context References....................... 116
EE.5.14.1 Application Component Provider's Responsibilities 117
EES5142 Application Assembler’s Responsibilities120
EE.5.14.3 Deployer'sResponsibility...................... 121
EE.5.144 JavaEE Product Provider’s Responsibility. 122
EE.5.145 System Administrator’ s Responsibility. 122

EE.5.15 Application Name and Module Name References. 122
EE.5.151 Application Component Provider's Responsibilities 123
EE.5.15.2 JavaEE Product Provider’s Responsibilities 123

EE.5.16 Validator and Validator Factory References 123
EE.5.16.1 Application Component Provider's Responsibilities 124
EE.5.16.2 JavaEE Product Provider’s Responsibilities 124

EE.5.17 DataSource Resource Definition 125
EE.5.17.1 Application Component Provider's Responsibilities 126
EE.5.17.2 JavaEE Product Provider’s Responsibilities 127

EE.5.18 ManagedBeanReferences........................... 127

MB.5.18.1 Application Component Provider’s Responsibilities 128

Xi

Xii

MB.5.18.2 JavaEE Product Provider's Responsibilities 128
EE519 BeanManager References.................c.oi... 128
EE.5.19.1 Application Component Provider’s Responsibilities 129
EE.5.19.2 JavaEE Product Provider’'s Responsibilities 129
EE.5.20 Support for Dependency Injection (JSR-330) 129
EE.6 Application Programming Interface................. 133
EE.6.1 Required APISo 133
EE.6.1.1 JavaCompatible APIS. 134
EE.6.1.2 Required Java Technologies. 135
EE.6.1.3 Pruned Java Technologies. 137
EE.6.2 Java Platform, Standard Edition (Java SE) Requirements. . . 138
EE.6.2.1 Programming Restrictions. 138
EE.6.2.2 The Java EE Security PermissionsSet 139
EE.6.2.3 Listing of the Java EE Security Permissions Set. . .. 139
EE.6.2.4 Additional Requirements. 141
EE.6.3 Enterprise JavaBeans™ (EJB) 3.1 Requirements 149
EE.6.4 Servliet 3.0 Requirements. 150
EE.6.5 JavaServer Pages™ (JSP) 2.2 Requirements. 151
EE.6.6 Expression Language (EL) 2.2 Requirements 151
EE.6.7 Java™ Message Service (IMS) 1.1 Requirements. 151
EE.6.8 Java™ Transaction APl (JTA) 1.1 Requirements 153
EE.6.9 JavaMail™ 1.4 Requirementscoiiin... 153
EE.6.10 JavaEE™ Connector Architecture 1.6 Requirements. 155
EE.6.11 Web Servicesfor JavaEE 1.3 Requirements. 155
EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements
(Proposed Optional)ovii e 155
EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.2 Requirements
156
EE.6.14 Java™ API for RESTful Web Services (JAX-RS) 1.1 Require-
MENES. .. 156
EE.6.15 Java™ Architecturefor XML Binding (JAXB) 2.2 Requirements
157
EE.6.16 Java™ API for XML Registries (JAXR) 1.0 Requirements (Pro-
posedOptional)cc i 157
EE.6.17 Java™ Platform, Enterprise Edition Management APl 1.1 Re-
QUITEMENTS . . .ttt et e e 158

EE.6.18 Java™ Platform, Enterprise Edition Deployment APl 1.2 Re-

Final Release

quirements (Proposed Optional). 158
EE.6.19 Java™ Authorization Service Provider Contract for Containers
(JACC) 14 Requirements.oveiiiieinnnnnnn. 158
EE.6.20 Java™ Authentication Service Provider Interface for Containers
(JASPIC) 1.0Requirements.ovvviii e 159
EE.6.21 Debugging Support for Other Languages (JSR-45) Requirements
159
EE.6.22 Standard Tag Library for JavaServer Pages™ (JSTL) 1.2 Re-
QUIFEMENES ...t e et e 159
EE.6.23 Web Services Metadata for the Java™ Platform 2.1 Require-
NS, . .ot 160
EE.6.24 JavaServer Faces™ 2.0 Requirements. 160
EE.6.25 Common Annotations for the Java™ Platform 1.1 Requirements
160
EE.6.26 Java™ Persistence APl 2.0 Requirements............... 161
EE.6.27 BeanValidation 1.0 Requirements. 162
EE.6.28 Managed Beans1.0 Requirements. 162
EE.6.29 Interceptorsl.1Requirements...............c.oooun... 162
EE.6.30 Contexts and Dependency Injection for the Java EE Platform 1.0
Requirements 163
EE.6.31 Dependency Injection for Java 1.0 Requirements 163
EE.7 Interoperability......... 165
EE.7.1 Introduction to Interoperability 165
EE.7.2 Interoperability Protocols. 166
EE.7.2.1 Internet and Web Protocols. 166
EE.7.2.2 OMGPIrotocolsov i 167
EE.7.2.3 Java Technology Protocols 168
EE.7.24 DataFormats.c i, 168
EE.8 Application Assembly and Deployment 171
EE.8.1 Application Development LifeCycle. 172
EE.8.1.1 ComponentCreationcccvvvnnnn.. 173
EE.8.1.2 ApplicationAssembly L 175
EE.8.1.3 Deployment. 176
EE.8.2 Library Support. e 176
EE.8.2.1 BundledLibraries 177
EE.8.2.2 Instaled Libraries 178

EE.8.2.3 Library Conflicts.t 179

Xiii

Xiv

EE.8.2.4 Library Resources. ...t 179
EE.8.2.5 DynamicClassLoading 179
EE.8.2.6 Examples. ... 180
EE.8.3 ClassLoading Requirements, 182
EE.8.3.1 Web Container Class Loading Requirements. 182
EE.8.3.2 EJB Container Class Loading Requirements 184
EE.8.3.3 Application Client Container Class Loading Require-
NS . e 186
EE.8.34 Applet Container Class Loading Requirements 187
EE.8.4 Application Assembly o 187
EE.8.4.1 Assembling aJava EE Application. 187
EE.8.4.2 Adding and RemovingModules. 190
EE.8.5 Deployment ... 191
EE.85.1 Deploying a Stand-Alone Java EE Module. 192
EE.8.5.2 Deploying aJava EE Application. 194
EE.8.5.3 DeployingalLibrary 196
EE.8.5.4 Module Initidization. 197
EE.8.6 Java EE Application XML Schema.................... 197
EE.8.7 Common Java EE XML Schema Definitions. 199
EE.9 Profiles ... 201
EE.9.1 INntroductiono 201
EE.9.2 Profile Definition 202
EE.9.3 Genera Rulesfor Profiles 202
EE.94 Expression of Requirements. 203
EE.9.5 Requirements for All JavaEE Profiles. 203
EE.Q.6 Optional Featuresfor JavaEE Profiles 204
EE.9.7 Full Java EE Product Requirements. 204
EE.10 Application Clients., 207
EE.10.1 OVEIVIEW ..ottt et 207
EE.10.2 SECUMLY. ..\ttt 207
EE.10.3 TransaCtionS.oouiniii i 208
EE.10.4 Resources, Naming, and Injection..................... 209
EE.10.5 Application Programming Interfaces................... 209
EE.10.6 Packagingand Deployment 209
EE.10.7 JavaEE Application Client XML Schema. 211
EE.11 ServiceProvider Interface.......................... 213

Final Release

EE.11.1 Java™ EE Connector Architecture. 213

EE.11.2 Java™ Authorization Service Provider Contract for Containers.

213

EE.11.3 Java™ Transaction APl 214
EE.11.4 Java™ Persistence ... 214
EE.115 Java™ API for XML Web Services.................... 214
EE.11.6 JavaMail™ 214
EE.12 Compatibility and Migration. 215
EE.121 Compatibility. 215
EE. 1211 JavaServer PagesS.oveiiineennnn.. 216
EE.12.2 Migration.ooou it 216
EE.1221 JavaServer FaceS..............ouviiineennnn.. 216
EE.1222 JavaPersistence................coiiiiiinn... 216

EE. 1223 JAX-WS .. 217
EE.1224 Annotations...............c..iiiiiiiiiia.. 217

EE.13 FutureDirections................, 219
EE.13.1 JINLP(Java™WebStart)................oiiiitn, 219
EE.13.2 JavaEESPI 220
Appendix EE.A: Previous Version Deployment Descriptors. 221
EE.A.1 JavaEES5 Application XML Schema. 221
EE.A.2 Common JavaEE 5 XML Schema Definitions 222
EE.A.3 JavaEE5 Application Client XML Schema 222
EE.A.4 J2EE 1.4 Application XML Schema 225
EE.A.5 Common J2EE 1.4 XML SchemaDefinitions............ 226
EE.A.6 J2EE:application 1L3XMLDTD ..., 226
EEA.7 JEEapplication1L.2XMLDTD ...t 227
EE.A.8 J2EE 1.4 Application Client XML Schema.............. 228
EE.A.9 JEE:application-client L3XMLDTD 230
EE.A.10 J2EE:application-client L.2XMLDTD 231
Appendix EE.B: Revision History 233
EE.B.1 ChangesinExpertDraftl 233
EE.B.1.1 Additional Requirements. 233
EE.B.1.2 Removed Requirements. 233
EE.B.1.3 Editorial Changes 233
EE.B.2 ChangesinExpertDraft2 234

XV

XVi

EE.B.2.1 Additional Requirements. 234
EE.B.2.2 Removed Requirements 234
EE.B.2.3 Editorial Changes 234
EE.B.3 ChangesinEarlyDraft............... ... 235
EE.B.3.1 Additional Requirements. 235
EE.B.3.2 Removed Requirements 235
EE.B.3.3 Editorial Changes oot 235
EE.B.4 ChangesinPublicDraft............................. 235
EE.B.4.1 Additional Requirements. 235
EE.B.4.2 Removed Requirements 236
EE.B.4.3 Editorial Changes, 236
EE.B.5 ChangesinProposed Final Draft...................... 236
EE.B5.1 Additional Requirements. 236
EE.B.5.2 Removed Requirements 237
EE.B.5.3 Editorial Changes.t 238
EE.B.6 ChangesinFind Release............................ 238
EE.B.6.1 Additional Requirements. 238
EE.B.6.2 Removed Requirements 239
EE.B.6.3 Editoria Changes.t 239
Appendix EE.C: Related Documents 241

Final Release

cuneren EELL

| ntroduction

Enterprisestoday need to extend their reach, reduce their costs, and lower the
response times of their servicesto customers, employees, and suppliers.

Typicaly, applications that provide these services must combine existing
enterprise information systems (EI Ss) with new business functions that deliver
services to abroad range of users. The services need to be:

* Highly available, to meet the needs of today’s global business environment.
* Secure, to protect the privacy of users and the integrity of the enterprise.

 Reliable and scalable, to ensure that business transactions are accurately and
promptly processed.

In most cases, enterprise services are implemented as multitier applications.
The middle tiers integrate existing El Ss with the business functions and data of
the new service. Maturing web technologies are used to provide first tier users
with easy access to business complexities, and eliminate or drastically reduce user
administration and training.

The Java™ Platform, Enterprise Edition (Java™ EE) reduces the cost and
complexity of developing multitier, enterprise services. Java EE applications can
be rapidly deployed and easily enhanced as the enterprise responds to competitive
pressures.

Java EE achieves these benefits by defining a standard architecture with the
following elements:

» Java EE Platform - A standard platform for hosting Java EE applications.

» Java EE Compatibility Test Suite - A suite of compatibility tests for verify-
ing that a Java EE platform product complies with the Java EE platform stan-
dard.

» Java EE Reference | mplementation - A reference implementation for proto-
typing Java EE applications and for providing an operational definition of the
Java EE platform.

» Java EE BluePrints - A set of best practices for developing multitier, thin-
client services.

This document is the Java EE platform specification. It sets out the
requirements that a Java EE platform product must meet.

EE.1.1 Acknowledgements

This specification is the work of many people. Vlada Matenawrote thefirst draft as
well as the Transaction Management and Naming chapters. Sekhar Vajjhala, Kevin
Osbhorn, and Ron Monzillo wrote the Security chapter. Hans Hrasna wrote the
Application Assembly and Deployment chapter. Seth White wrote the JDBC API
requirements. Jim Inscore, Eric Jendrock, and Beth Stearns provided editorial
assistance. Shel Finkelstein, Mark Hapner, Danny Coward, Tom Kincaid, and Tony
Ng provided feedback on many drafts. And of course this specification was formed
and molded based on conversations with and review feedback from our many
industry partners.

EE.1.2 Acknowledgementsfor Version 1.3

Version 1.3 of this specification grew out of discussionswith our partners during the
creation of version 1.2, as well as meetings with those partners subsequent to the
final release of version 1.2. Version 1.3 was created under the Java Community
Process as JSR-058. The JSR-058 Expert Group included representatives from the
following companies and organizations: Allaire, BEA Systems, Bluestone Software,
Borland, Bull S.A., Exoffice, Fujitsu Limited, GemStone Systems, Inc., IBM, Inline
Software, IONA Technologies, iPlanet, jGuru.com, Orion Application Server,
Persistence, POET Software, SilverStream, Sun, and Sybase. In addition, most of
the people who hel ped with the previous version continued to help with this version,

Final Release

ACKNOWLEDGEMENTSFORVERSION 1.4

aong with Jon Ellis and Ram Jeyaraman. Alfred Towell provided significant
editorial assistance with thisversion.

EE.1.3 Acknowledgementsfor Version 1.4

Version 1.4 of this specification was created under the Java Community Process as
JSR-151. The JSR-151 Expert Group included the following members: Larry W.
Allen (SilverStream Software), Karl Aveda (Individual), Charlton Barreto
(Borland Software Corporation), Edward Cobb (BEA), Alan Davies (SeeBeyond
Technology Corporation), Sreeram Duvvuru (iPlanet), B.J. Fesg (Individua),
Mark Field (Macromedia), Mark Hapner (Sun Microsystems, Inc.), Pierce Hickey
(IONA), Hemant Khandelwa (Pramati Technologies), Jim Knutson (IBM), Elika
S. Kohen (Individual), Ramesh L oganathan (Pramati Technologies), Jasen Minton
(Oracle Corporation), Jeff Mischkinsky (Oracle Corporation), Richard Monson-
Haefel (Individual), Sean Neville (Macromedia), Bill Shannon (Sun Microsystems,
Inc.), Simon Tuffs (Lutris Technologies), Jeffrey Wang (Persistence Software,
Inc.), and Ingo Zenz (SAP AG). My colleagues at Sun provided invaluable
assistance: Umit Yalcinalp converted the deployment descriptorsto XML Schema;
Tony Ng and Sanjeev Krishnan hel ped with transaction regquirements; Jonathan
Bruce helped with JDBC requirements; Suzette Pelouch, Eric Jendrock, and lan
Evans provided editorial assistance. Thanks also to all the externa reviewers,
including Jeff Estefan (Adecco Technical Services).

EE.14 Acknowledgementsfor Version 5

Version 5 (originally known as version 1.5) of this specification was created under
the Java Commuinity Process as JSR-244. The JSR-244 Expert Group included the
following members: Kilinc Alkan (Individual), Rama Murthy Amar Pratap
(Individual), Charlton Barreto (Individua), Michael Bechauf (SAP AG), Florent
Benaoit (INRIA), Bill Burke (JBoss, Inc.), Muralidharan Chandrasekaran
(Individual), Yongmin Chen (Novell, Inc.), Jun Ho Cho (TmaxSoft), Ed Cobb
(BEA), Ugo Corda (SeeBeyond Technology Corporation), Scott Crawford
(Individua), Arulazi Dhesiaseelan (Hewlett-Packard Company), Bill Dudney
(Individua), Francois Exertier (INRIA), Jeff Genender (The Apache Software
Foundation), Evan Ireland (Sybase, Inc.), Vishy Kasar (Borland Software
Corporation), Michagl Keith (Orcale Corporation), Wonseok Kim (TmaxSoft, Inc.),

Jm Knutson (IBM), Elika Kohen (Individual), Felipe Leme (Individual), Geir
Magnusson Jr. (The Apache Software Foundation), Scott Marlow (Novell, Inc.),
Jasen Minton (Oracle Corporation), Jishnu Mitra (Borland Software Corp), David
Morandi (E.piphany), Nathan Pahucki (Novell, Inc.), David Morandi (E.piphany,
Inc.), Ricardo Morin (Intel Corporation), Nathan Pahucki (Novell, Inc.), Matt
Raible (Individual), Dirk Reinshagen (Individual), Narinder Sahota (Cap Gemini),
Suneet Shah (Individua), Bill Shannon (Sun Micrasystems, Inc.), Rajiv Shivane
(Pramati Technologies), Scott Stark (Jboss, Inc), Hani Suleiman (Ironflare AB),
Kresten Krab Thorup (Trifork), Ashish Kumar Tiwari (Individual), Sivasundaram
Umapathy (Individual), Steve Weston (Cap Gemini), Seth White (BEA Systems),
and Umit Yacinap (SAP AG). Once again, my colleagues at Sun provided
invaluable assistance: Roberto Chinnici provided draft proposals for many issues
related to dependency injection.

EE.15 Acknowledgementsfor Version 6

Version 6 of this specification was created under the Java Community Process as
JSR-316. The spec leads for the JSR-316 Expert Group were Bill Shannon (Sun
Microsystems, Inc.) and Roberto Chinnici (Sun Microsystems, Inc.). The expert
group included the following members: Florent Benoit (Inria), Adam Bien
(Individual), David Blevins (Individua), Bill Burke (Red Hat Middleware LLC),
Larry Cable (BEA Systems), Bongjae Chang (Tmax Soft, Inc.), Rejeev Divakaran
(Individual), Francois Exertier (Inrid), Jeff Genender (Individual), Antonio
Goncalves (Individua), Jason Greene (Red Hat Middleware LL C), Gang Huang
(Peking University), Rod Johnson (SpringSource), Werner Keil (Individual),
Michael Keith (Oracle), Wonseok Kim (Tmax Soft, Inc.), Jim Knutson (IBM),
Elika S. Kohen (Individual), Peter Kristiansson (Ericsson AB), Changshin Lee
(NCsoft Corporation), Felipe Leme (Individual), Ming Li (TongTech Ltd.),
Vladimir Pavlov (SAP AG), Dhanji R. Prasanna (Google), Reza Rahman
(Individua), Rajiv Shivane (Pramati Technologies), Hani Suleiman (Individual).

Final Release

cureren EE.2

Platform Overview

T his chapter provides an overview of the Java™ Patform, Enterprise Edition
(JavaEE™).

EE.2.1 Architecture

The required relationships of architectural elements of the Java EE platform are
shown in Figure EE.2-1. Note that this figure shows the logical relationships of the
elements; it is not meant to imply a physical partitioning of the eementsinto
separate machines, processes, address spaces, or virtual machines.

The Containers, denoted by the separate rectangles, are Java EE runtime
environments that provide required services to the application components
represented in the upper half of the rectangle. The services provided are denoted
by the boxesin the lower half of the rectangle. For example, the Application
Client Container provides Java Message Service (JMS) APIsto Application
Clients, aswell as the other services represented. All these services are explained
below. See Section EE.2.7, “ Java EE Standard Services’.

The arrows represent required access to other parts of the Java EE platform.
The Application Client Container provides Application Clients with direct access
to the Java EE required Database through the Java API for connectivity with
database systems, the JDBC™ API. Similar access to databasesis provided to JSP
pages and servlets by the Web Container, and to enterprise beans by the EJB
Container.

Asindicated, the APIs of the Java™ Platform, Standard Edition (Java SE), are
supported by Java SE runtime environments for each type of application
component.

EJB Container

Applet Container Web Container

Applet | HTTP > JSP
SSL

v v

Java SE

OdH-XVC

2dH-XVC
SAXVC
TeNener

S0INIBS oM
BlepeIajN SM
Soudlsisiod ener

Juawabeue
EERRESEE

1a%®1d0
$10109UU0D

lRNener
EIePeISIN S
JUsWwabeuey
$10109UU0D

HTTP
ssL

2Juslsisiad ener

@
b3
z
w
:

REVERSS

Application Client
Container

Application
Client

Ody-Xvl
SM-XV[

XVl

Database

EERNESCER
elepesiy SM
Soudlsisiad ener

[’d
>
>
[

Java SE

[New in Java EE 6
FigureEE.2-1 Java EE Architecture Diagram

The following sections describe the Java EE Platform requirements for each
kind of Java EE platform element.

EE.2.2 Profiles

The Java EE 6 specification introduces the notion of “profiles’ (see Chapter EE.9,
“Profiles’).

A profileisaconfiguration of the Java EE platform targeted at a specific class
of applications.

Profiles are not a new concept, nor are they unique to the Java EE platform.
The Java Community Process Document (version 2.6) gives the following
definition of a profile: “A Specification that references one of the Platform
Edition Specifications and zero or more other JCP Specifications (that are not
already apart of a Platform Edition Specification). APIs from the referenced
Platform Edition must be included according to the referencing rules set out in

Final Release

PROFILES

that Platform Edition Specification. Other referenced specifications must be
referenced in their entirety.”

All Java EE profiles share a set of common features, such as naming and
resource injection, packaging rules, security requirements, etc. This guarantees a
degree of uniformity across all products, and indirectly applications, that fall
under the “ Java EE platform” umbrella. This also ensuresthat developers who are
familiar with a certain profile, or with the full platform, can move easily to other
profiles, avoiding excessive compartmentalization of skills and experience.

Beyond the basic functionality outlined above, profiles are free to include any
set of technologies that are part of the platform, provided that all rulesin the
present specification that pertain to the included technologies,either alone or in
combination with others, are followed.

Thislast point is worth stressing. If profiles only included pointwise
technologies, they would be little more than bundles of APIswith few or no tie-
ins. Instead, the definition of profiles adopted here guarantees that, whenever this
specification defines requirements on combinations of technologies, these
requirements will be honored in al products based on Java EE profiles.

As aconcrete example, let’s consider the use of transactionsin a servlet
container. In isolation, neither the Servlet specification nor the Java Transaction
API specification define a complete programming model for portable
applications. This specification then fills that gap by introducting its own set of
requirements that pertain conjunctly to Servlets and JTA. These requirements
must be satisfied by any Java EE profile-based product that includes those two
technologies, thus offering application devel opers a more complete programming
model shared across al relevant Java EE profiles.

A separate specification, the Java EE 6 Web Profile Specification, defines the
Java EE Web Profile, the first new profile of the Java EE 6 platform.

Additional profiles may be defined in accordance with the rules of the Java
Community Process and those contained in the present specification. In particular,
profiles are initiated by submitting a Java Specification Request and are released
at completion on their own schedule, independently of any concurrent revision of
the platform itself or of other profiles. This ensures maximum flexibility in
defining and releasing a new profile or an updated version of an existing one.

In accordance with the definition of profiles given above, a profile may end
up being either a proper subset of the platform, or a proper superset of it, or it may
overlap with it to a certain extent. This flexibility guarantees that future profiles
will be able to cover useswell beyond those originally envisioned by the platform
specification.

7

As the previous paragraphs made clear, creating a new profile is asignificant
undertaking. The decision to create a profile should take into account its potential
drawbacks, especialy in terms of fragmentation and developer confusion. In
general, a profile should be created only when there is a natural developer
constituency and awell-understood class of applications that can benefit fromit.
It is also recommended that a profile cast a comprehensive net on its area of
interest, to minimize the occurrence of overlapping or competing profiles. Java
EE 6 platform features such as optional components, extensibility and pruning can
be used by profiles to achieve a better fit to their intended target.

EE.2.3 Application Components

The Java EE runtime environment defines four application component typesthat a
Java EE product must support:

» Application clientsare Javaprogramming language programsthat aretypically
GUI programs that execute on a desktop computer. Application clients offer a
user experience similar to that of native applications, and have accessto al of
the facilities of the Java EE middletier.

» Appletsare GUI components that typically execute in aweb browser, but can
execute in avariety of other applications or devices that support the applet
programming model. Applets can be used to provide a powerful user interface
for Java EE applications. (Simple HTML pages can aso be used to provide a
more limited user interface for Java EE applications.)

» Servlets, JSP pages, JSF applications, filters, and web event listenerstypically
execute in aweb container and may respond to HTTP requests from web cli-
ents. Servlets, JSP pages, JSF applications, and filters may be used to generate
HTML pages that are an application’s user interface. They may aso be used
to generate XML or other format data that is consumed by other application
components. A special kind of servlet provides support for web services using
the SOAP/HTTP protocol. Servlets, pages created with the JavaServer Pag-
es™ technology or JavaServer™ Faces technology, web filters, and web
event listeners are referred to collectively in this specification as “web com-
ponents.” Web applications are composed of web components and other data
such as HTML pages. Web components execute in aweb container. A web
server includes aweb container and other protocol support, security support,
and so on, as required by Java EE specifications.

Final Release

CONTAINERS

 Enterprise JavaBeans™ (EJB) components execute in amanaged environment
that supportstransactions. Enterprise beanstypically contain the businesslogic
for a Java EE application. Enterprise beans may directly provide web services
using the SOAP/HTTP protocal.

EE.23.1 Java EE Server Support for Application Components

The Java EE servers provide deployment, management, and execution support for
conforming application components. Application components can be divided into
three categories according to their dependence on a Java EE server:

» Components that are deployed, managed, and executed on a Java EE server.
These componentsinclude web components and Enterprise JavaBeans compo-
nents. See the separate specifications for these components.

» Components that are deployed and managed on a Java EE server, but are |oad-
ed to and executed on a client machine. These components include web re-
sources such as HTML pages and applets embedded in HTML pages.

» Componentswhose depl oyment and management is not compl etely defined by
thisspecification. Application Clientsfall into this category. Future versions of
this specification may more fully define deployment and management of Ap-
plication Clients. See Chapter EE.10, “Application Clients’ for a description
of Application Clients.

EE.24 Containers

Containers provide the runtime support for Java EE application components.
Containers provide a federated view of the underlying Java EE APIsto the
application components. Java EE application components never interact directly
with other Java EE application components. They use the protocols and methods of
the container for interacting with each other and with platform services. Interposing
acontainer between the appli cation components and the Java EE services alowsthe
container to transparently inject the services required by the component, such as
declarative transaction management, security checks, resource pooling, and state
management.

A typical Java EE product will provide a container for each application
component type: application client container, applet container, web component
container, and enterprise bean container.

10

EE.24.1 Container Requirements

This specification requires that containers provide a Java Compatible™ runtime
environment, as defined by the Java Platform, Standard Edition, v6 specification
(Java SE). The applet container may use the Java Plugin product to provide this
environment, or it may provideit natively. The use of applet containers providing
JDK™ 1.1 APIsisoutside the scope of this specification.

The container tools must understand the file formats for the packaging of
application components for deployment.

The containers are implemented by a Java EE Product Provider. See the
description of the Product Provider role in Section EE.2.11.1, “ Java EE Product
Provider”.

This specification defines a set of standard services that each Java EE product
must support. These standard services are described below. The Java EE
containers provide the APIs that application components use to access these
services. This specification also describes standard ways to extend Java EE
services with connectors to other non-Java EE application systems, such as
mainframe systems and ERP systems.

EE.2.4.2 Java EE Servers

Underlying a Java EE container isthe server of which it isapart. A Java EE Product
Provider typically implements the Java EE server-side functionality using an
existing transaction processing infrastructure in combination with Java Platform,
Standard Edition (Java SE) technology. The Java EE client functionality istypicaly
built on Java SE technology.

EE.25 Resour ce Adapters

A resource adapter is a system-level software component that typically implements
network connectivity to an external resource manager. A resource adapter can
extend the functionality of the Java EE platform either by implementing one of the
Java EE standard service APIs (such asaJDBC™ driver), or by defining and
implementing a resource adapter for a connector to an external application system.
Resource adapters may also provide servicesthat are entirely local, perhaps
interacting with native resources. Resource adapters interface with the Java EE
platform through the Java EE service provider interfaces (Java EE SPI). A resource

Final Release

DATABASE

adapter that uses the Java EE SPIsto attach to the Java EE platform will be able to
work with all Java EE products.

EE.2.6 Database

The Java EE platform requires a database, accessible through the JDBC AP, for the
storage of business data. The database is accessible from web components,
enterprise beans, and application client components. The database need not be
accessible from applets.

EE.2.7 Java EE Standard Services

The Java EE standard services include the following (specified in more detail later
in thisdocument). Some of these standard services are actually provided by Java SE.

EE.2.7.1 HTTP

The HTTP client-side AP is defined by the java.net package. The HT TP server-
side APl isdefined by the servlet, JSP, and JSF interfaces and by the web services
support that is a part of the Java EE platform.

EE.2.7.2 HTTPS
Use of the HTTP protocol over the SSL protocol is supported by the same client and
server APIsasHTTPR.

EE.2.7.3 Java™ Transaction APl (JTA)

The Java Transaction API consists of two parts:

» Anapplication-level demarcation interface that isused by the container and ap-
plication components to demarcate transaction boundaries.

« Aninterface between the transaction manager and a resource manager used at
the Java EE SPI level.

11

12

EE.2.7.4 RMI-ITOP

The RMI-110P subsystem is composed of APIsthat allow for the use of RMI-style
programming that isindependent of the underlying protocol, aswell asan
implementation of those APIs that supports both the Java SE native RMI protocol
(JRMP) and the CORBA 110OP protocol. Java EE applications can use RMI-110P,
with I11OP protocol support, to access CORBA services that are compatible with the
RMI programming restrictions (see the RMI-110P spec for details). Such CORBA
serviceswould typically be defined by components that live outside of a Java EE
product, usualy in alegacy system. Only Java EE application clients are required to
be able to define their own CORBA services directly, using the RMI-11OP APls.
Typically such CORBA objects would be used for callbacks when accessing other
CORBA objects.

Java EE applications are required to use the RMI-11OP APIs, specifically the
narrow method of javax.rmi.PortableRemoteObject, When accessing Enterprise
JavaBeans components, as described in the EJB specification. Thisalows
enterprise beans to be protocol independent. Note that the most common use of
the narrow method is not needed when using dependency injection instead of
JNDI lookups; the container will perform the narrow for the application before
injecting the object reference. Java EE products must be capable of exporting
enterprise beans using the [1OP protocol, and accessing enterprise beans using the
I1OP protocol, as specified in the EJB specification. The ability to use the I|OP
protocol isrequired to enable interoperability between Java EE products, however
aJava EE product may also use other protocols.

EE.2.7.5 Java IDL

Java DL dlows Java EE application components to invoke external CORBA
objects using the [1OP protocol. These CORBA objects may be written in any
language and typically live outside a Java EE product. Java EE applications may use
Java|DL to act as clients of CORBA services, but only Java EE application clients
arerequired to be allowed to use Java IDL directly to present CORBA services
themselves.

EE.2.7.6 JDBC™ API

The JDBC API isthe API for connectivity with relationa database systems. The
JDBC API hastwo parts. an application-level interface used by the application

Final Release

JAVA EE STANDARD SERVICES 13

components to access a database, and a service provider interface to attach a JDBC
driver to the Java EE platform. Support for the service provider interface is not
required in Java EE products. Instead, JDBC drivers should be packaged as resource
adaptersthat use the facilities of the Connector API to interface with a JJava EE
product. The JIDBC AP isincluded in Java SE, but this specification includes
additional requirements on JDBC device drivers.

EE.2.7.7 Java™ Persistence API

The Java Persistence API isthe standard API for the management of persistence and
object/relational mapping. This specification provides an object/rel ational mapping
facility for application devel opers using a Java domain model to manage arelationa
database. The Java Persistence API isrequired to be supported in JavaEE. It can
also be used in Java SE environments.

EE.2.7.8 Java™ Message Service (JMS)

The Java Message Service isastandard API for messaging that supportsreliable
point-to-point messaging as well as the publish-subscribe moddl . This specification
requires aJM S provider that implements both point-to-point messaging aswell as
publish-subscribe messaging.

EE.2.7.9 Java Naming and Directory Interface™ (JNDI)

The INDI AP isthe standard API for naming and directory access. The INDI AP
has two parts: an application-level interface used by the application components to
access naming and directory services and a service provider interface to attach a
provider of anaming and directory service. The INDI API isincluded in Java SE,
but this specification defines additional requirements.

EE.2.7.10 JavaM ail ™

Many Internet applications require the ability to send email notifications, so the Java
EE platform includes the JavaMail APl dong with a JavaMail service provider that
allows an application component to send Internet mail. The JavaMail APl hastwo
parts. an application-level interface used by the application components to send
mail, and a service provider interface used at the Java EE SPI level.

14

EE.2.7.11 JavaBeans™ Activation Framework (JAF)

The JAF API provides aframework for handling datain different MIME types,
originating in different formats and locations. The JavaMail APl makes use of the
JAF API. The JAF AP isincluded in Java SE and so is available to Java EE
applications.

EE.2.7.12 XML Processing

The Java™ API for XML Processing (JAXP) provides support for the industry
standard SAX and DOM APIsfor parsing XML documents, as well as support for
XSLT transform engines. The Streaming API for XML (StAX) provides a pull-
parsing API for XML. The JAXP and StAX APIsareincluded in Java SE and so are
available to Java EE applications.

EE.2.7.13 Java EE™ Connector Architecture

The Connector architecture is a Java EE SPI that allows resource adapters that
support access to Enterprise Information Systems to be plugged in to any Java EE
product. The Connector architecture defines astandard set of system-level contracts
between a Java EE server and a resource adapter. The standard contracts include:

* A connection management contract that lets a Java EE server pool connections
to an underlying EIS, and lets application components connect to an EIS. This
leads to a scal able application environment that can support alarge number of
clientsrequiring access to EIS systems.

* A transaction management contract between the transaction manager and an
ElSthat supportstransactional accessto El'S resource managers. This contract
lets a Java EE server use atransaction manager to manage transactions across
multiple resource managers. This contract also supports transactions that are
managed internal to an EIS resource manager without the necessity of involv-
ing an external transaction manager.

A security contract that enables secure accessto an EIS. This contract pro-
vides support for a secure application environment, which reduces security
threats to the EI'S and protects valuabl e information resources managed by the
ElS.

« A thread management contract that allows a resource adapter to del egate work
to other threads and allows the application server to manage a pool of threads.

Final Release

JAVA EE STANDARD SERVICES 15

The resource adapter can control the security context and transaction context
used by the worker thread.

* A contract that allows aresource adapter to deliver messages to message driv-
en beans independent of the specific messaging style, messaging semantics,
and messaging infrastructure used to deliver messages. This contract also
serves as the standard message provider pluggability contract that allows a
message provider to be plugged into any Java EE server via aresource adapt-
er.

A contract that allows aresource adapter to propagate an imported transaction
context to the Java EE server such that its interactions with the server and any
application components are part of the imported transaction. This contract
preserves the ACID (atomicity, consistency, isolation, durability) properties
of the imported transaction.

« Anoptional contract providing ageneric command interface between an appli-
cation program and a resource adapter.

EE.2.7.14 Security Services

The Java™ Authentication and Authorization Service (JAAS) enables servicesto
authenticate and enforce access controls upon users. It implements a Java
technology version of the standard Plugable Authentication Module (PAM)
framework and supports user-based authorization. The Java™ Authorization
Service Provider Contract for Containers (JACC) defines a contract between a Java
EE application server and an authorization service provider, alowing custom
authorization service providersto be plugged into any Java EE product.

EE.2.7.15 Web Services

Java EE providesfull support for both clients of web servicesaswell asweb service
endpoints. Severa Javatechnol ogies work together to provide support for web
services. The Java API for XML Web Services (JAX-WS) and the Java API for
XML-based RPC (JAX-RPC) both provide support for web service calls using the
SOAP/HTTP protocol. JAX-WSisthe primary API for web servicesand isa
follow-on to JAX-RPC. JAX-WS offers extensive web services functionality, with
support for multiple bindingg/protocols. JAX-WS and JAX-RPC are fully
interoperable when using the SOAP 1.1 over HTTP protocol as constrained by the
WS-| Basic Profile specification.

16

JAX-WS and the Java Architecture for XML Binding (JAXB) define the
mapping between Java classes and XML as used in SOAP calls, and provides
support for 100% of XML Schema. The SOAP with Attachments API for Java
(SAAJ) provides support for manipulating low level SOAP messages. The Web
Services for Java EE specification fully defines the deployment of web service
clients and web service endpointsin Java EE, as well as the implementation of
web service endpoints using enterprise beans. The Web Services Metadata
specification defines Java language annotations that make it easier to develop web
services. The Java APl for XML Registries (JAXR) provides client access to
XML registry servers.

The Java API for RESTful Web Services (JAX-RS) provides support for web
services using the REST style. RESTful web services better match the design
style of the web and are often easier to access using awide variety of
programming languages. JAX-RS provides asimple high-level API for writing
such web services aswell as alow-level API that can be used to control al details
of the web service interaction.

EE.2.7.16 M anagement

The Java 2 Platform, Enterprise Edition Management Specification defines APIsfor
managing Java EE servers using a special management enterprise bean. The Java™
Management Extensions (JMX) API is dso used to provide some management

support.

EE.2.7.17 Deployment

The Java 2 Platform, Enterprise Edition Deployment Specification defines a
contract between deployment tools and Java EE products. The Java EE products
provide plug-in components that run in the deployment tool and allow the

Final Release

INTEROPERABILITY

deployment tool to deploy applications into the Java EE product. The deployment
tool provides services used by these plug-in components.

Xd

HTTP T f

JRMP HTTP T HTTP
ssL \ OP "¢, 0P gq. f
JRMP SOAP JRMP SOAP EJB/IIOP / SSL
\ \ HTTP /
\[/ '
Container
Web EJB
Container Container Database
Application A
Client T |
Container
// \ \ Java EE Platform|

//\\
JRMP lloP

/ SOAP HTTP
HTTP SSL

‘o

FigureEE.2-2

EE.2.8

\

Java EE Interoperability

I nter oper ability

Many of the APIs described above provide interoperability with components that
are not apart of the Java EE platform, such as external web or CORBA services.

Figure EE.2-2 illustrates the interoperability facilities of the Java EE platform.

(The directions of the arrows indicate the client/server relationships of the
components.)

17

18

EE.29 Flexibility of Product Requirements

This specification doesn’t require that a Java EE product be implemented by asingle
program, asingle server, or even asingle machine. In general, this specification
doesn't describe the partitioning of services or functions between machines, servers,
or processes. Aslong as the requirements in this specification are met, Java EE
Product Providers can partition the functionality however they seefit. A JavaEE
product must be able to deploy application components that execute with the
semantics described by this specification.

A typical low end Java EE product will support applets using the Java Plugin
in one of the popular browsers, application clients each in their own Javavirtual
machine, and will provide asingle server that supports both web components and
enterprise beans. A high end Java EE product might split the server components
into multiple servers, each of which can be distributed and |oad-balanced across a
collection of machines. This specification does not prescribe or preclude any of
these configurations.

A wide variety of Java EE product configurations and implementations, al of
which meet the requirements of this specification, are possible. A portable Java
EE application will function correctly when successfully deployed in any of these
products.

EE.2.10 Java EE Product Extensions

This specification describes aminimum set of facilities available to all Java EE
products. A Java EE profile may include some or al of these facilities, as described
in Chapter EE.9, “Profiles’. Products implementing the full Java EE platform must
provide al of them (see Section EE.9.7, “Full Java EE Product Requirements”).
Most Java EE products will provide facilities beyond the minimum required by this
specification. This specification includes only afew limitsto the ability of aproduct
to provide extensions. In particular, it includes the same restrictions as Java SE on
extensionsto Java APls. A Java EE product may not add classesto the Java
programming language packages included in this specification, and may not add
methods or otherwise alter the signatures of the specified classes.

However, many other extensions are allowed. A Java EE product may provide
additional Java APIs, either other Java optional packages or other (appropriately
named) packages. A Java EE product may include support for additional protocols
or services not specified here. A Java EE product may support applications

Final Release

PLATFORMROLES

written in other languages, or may support connectivity to other platforms or
applications.

Of course, portable applications will not make use of any platform extensions.
Applications that do make use of facilities not required by this specification will
be less portable. Depending on the facility used, the loss of portability may be
minor or it may be significant. The document Designing Enter prise Applications
with the Java 2 Platform, Enterprise Edition supplies information to help
application developers construct portable applications, and contains advice on
how best to manage the use of non-portable code when the use of such facilitiesis
necessary.

We expect Java EE products to vary widely and compete vigorously on
various aspects of quality of service. Products will provide different levels of
performance, scalability, robustness, availability, and security. In some cases this
specification requires minimum levels of service. Future versions of this
specification may allow applications to describe their requirements in these areas.

EE.2.11 Platform Roles

This section describes typical Java Platform, Enterprise Edition roles. In an actual
instance, an organization may divide role functionality differently to match that
organization’s application devel opment and deployment workflow.

Theroles are described in greater detail in later sections of this specification.
Relevant subsets of these roles are described in the EJB, JSP, and servlet
specifications included herein as parts of the Java EE specification.

EE.2.11.1 Java EE Product Provider

A Java EE Product Provider isthe implementor and supplier of a Java EE product
that includes the component containers, Java EE platform APIs, and other features
defined in this specification. A Java EE Product Provider istypically an operating
system vendor, a database system vendor, an application server vendor, or aweb
server vendor. A Java EE Product Provider must make available the Java EE APIs
to the application components through containers. A Product Provider frequently
bases their implementation on an existing infrastructure.

A Java EE Product Provider must provide the mapping of the application
components to the network protocols as specified by this specification. A JavaEE

19

20

product is free to implement interfaces that are not specified by this specification
in an implementation-specific way.

A Java EE Product Provider must provide application deployment and
management tools. Deployment tools enable a Deployer (see Section EE.2.11.4,
“Deployer”) to deploy application components on the Java EE product.
Management tools allow a System Administrator (see Section EE.2.11.5, “ System
Administrator”) to manage the Java EE product and the applications deployed on
the Java EE product. The form of these toolsis not prescribed by this
specification.

EE.2.11.2 Application Component Provider

There are multiple roles for Application Component Providers, including HTML
document designers, document programmers, and enterprise bean devel opers. These
roles use tools to produce Java EE applications and components.

EE.2.11.3 Application Assembler

The Application Assembler takes a set of components developed by Application
Component Providers and assembles them into a complete Java EE application
delivered in the form of an Enterprise Archive (.ear) file. The Application
Assembler will generally use GUI tools provided by either a Platform Provider or
Tool Provider. The Application Assembler is responsible for providing assembly
instructions describing external dependencies of the application that the Deployer
must resolve in the deployment process.

EE.2.114 Deployer

The Deployer isresponsible for deploying application clients, web applications, and
Enterprise JavaBeans components into a specific operationa environment. The
Deployer uses tools supplied by the Java EE Product Provider to carry out
deployment tasks. Deployment istypically athree-stage process:

1. During I nstallation the Deployer moves application media to the server, gen-
erates the additional container-specific classes and interfaces that enable the
container to manage the application components at runtime, and installs appli-
cation components, and additional classes and interfaces, into the appropriate
Java EE containers.

Final Release

PLATFORMROLES 21

2. During Configuration, external dependencies declared by the Application
Component Provider are resolved and application assembly instructions de-
fined by the Application Assembler are followed. For example, the Deployer
isresponsiblefor mapping security rolesdefined by the Application Assembler
onto user groups and accounts that exist in the target operational environment.

3. Findlly, the Deployer starts up Execution of the newly installed and config-
ured application.

In some cases, a specially qualified Deployer may customize the business
logic of the application’s components at deployment time. For example, using
tools provided with a Java EE product, the Deployer may provide ssmple
application code that wraps an enterprise bean’s business methods, or customizes
the appearance of a JSP page.

The Deployer’s output is web applications, enterprise beans, applets, and
application clients that have been customized for the target operational
environment and are deployed in a specific Java EE container.

EE.2.115 System Administrator

The System Administrator isresponsible for the configuration and administration of
the enterprise’s computing and networking infrastructure. The System
Administrator is also responsible for overseeing the runtime well-being of the
deployed Java EE applications. The System Administrator typically uses runtime
monitoring and management tools provided by the Java EE Product Provider to
accomplish these tasks.

EE.2.11.6 Tool Provider

A Tool Provider providestools used for the devel opment and packaging of
application components. A variety of tools are anticipated, corresponding to the
types of application components supported by the Java EE platform. Platform
independent tools can be used for al phases of development through the
deployment of an application and the management and monitoring of an application
server.

EE.2.11.7 System Component Provider

A variety of system level components may be provided by System Component
Providers. The Connector Architecture defines the primary APIs used to provide

22

resource adapters of many types. These resource adapters may connect to existing
enterprise information systems of many types, including databases and messaging
systems. Another type of system component is an authorization policy provider as
defined by the Java Authorization Service Provider Contract for Containers
specification.

EE.2.12 Platform Contracts

This section describes the Java Platform, Enterprise Edition contracts that must be
fulfilled by a Java EE Product Provider implementing the full Java EE platform.
Java EE profiles may include some or all of these facilities, as described in
Chapter EE.9, “Profiles’.

EE.2.12.1 Java EE APIs

The Java EE APIs define the contract between the Java EE application components
and the Java EE platform. The contract specifies bath the runtime and deployment
interfaces.

The Java EE Product Provider must implement the Java EE APIsin away that
supports the semantics and policies described in this specification. The
Application Component Provider provides components that conform to these
APlIsand palicies.

EE.2.12.2 Java EE Service Provider Interfaces (SPIs)

The Java EE Service Provider Interfaces (SPIs) define the contract between the Java
EE platform and service providers that may be plugged into a Java EE product. The
Connector APIs define service provider interfaces for integrating resource adapters
with a Java EE application server. Resource adapter components implementing the
Connector APIs are called Connectors. The Java EE Authorization APIs define
service provider interfaces for integrating security authorization mechanismswith a
Java EE application server.

The Java EE Product Provider must implement the Java EE SPIsin away that
supports the semantics and policies described in this specification. A provider of
Service Provider components (for example, a Connector Provider) should provide
components that conform to these SPIs and policies.

Final Release

CHANGESIN 2EE 1.3

EE.2.12.3 Network Protocols

This specification defines the mapping of application components to industry-
standard network protocols. The mapping allows client access to the application
components from systems that have not installed Java EE product technology. See
Chapter EE.7, “Interoperability” for details on the network protocol support
required for interoperability.

The Java EE Product Provider is required to publish the installed application
components on the industry-standard protocols. This specification defines the
mapping of servlets and JSP pages to the HTTP and HTTPS protocols, and the
mapping of EJB componentsto I10OP and SOAP protocols.

EE.2.124 Deployment Descriptors and Annotations

Deployment descriptors and Javalanguage annotations are used to communi cate the
needs of application components to the Deployer. The deployment descriptor and
classfile annotations are acontract between the Application Component Provider or
Assembler and the Deployer. The Application Component Provider or Assembler is
required to specify the application component’s external resource requirements,
Security requirements, environment parameters, and so forth in the component’s
deployment descriptor or through class file annotations. The Java EE Product
Provider isrequired to provide a deployment tool that interprets the Java EE
deployment descriptors and class file annotations and allows the Deployer to map
the application component’s requirements to the capabilities of a specific Java EE
product and environment.

EE.2.13 Changesin J2EE 1.3

The J2EE 1.3 specification extends the J2EE platform with additional enterprise
integration facilities. The Connector APl supports integration with external
enterprise information systems. A JMS provider is now required. The JAXP AP
provides support for processing XML documents. The JAAS API provides security
support for the Connector API. The EJB specification now reguires support for
interoperability using the I1OP protocol .

Significant changes have been made to the EJB specification. The EJB
specification has a new container-managed persistence model, support for
message driven beans, and support for local enterprise beans.

23

24

Other existing J2EE APIs have been updated as well. See the individual API
specifications for details. Finally, J2EE 1.3 requires support for J2SE 1.3.

EE.2.14 Changesin J2EE 1.4

The primary focus of J2EE 1.4 is support for web services. The JAX-RPC and
SAAJAPIs provide the basic web services interoperability support. The Web
Services for J2EE specification describes the packaging and deployment
requirements for J2EE applications that provide and use web services. The EJB
specification was also extended to support implementing web services using
statel ess session beans. The JAXR API supports access to registries and
repositories.

Several other APIs have been added to J2EE 1.4. The J2EE Management and
J2EE Deployment APIs enable enhanced tool support for J2EE products. The
JMX API supports the 2EE Management API. The J2EE Authorization Contract
for Containers provides an SPI for security providers.

Many of the existing J2EE APIs have been enhanced in 2EE 1.4. 2EE 1.4
builds on J2SE 1.4. The JSP specification has been enhanced to simplify the
devel opment of web applications. The Connector APl now supports integration
with asynchronous messaging systems, including the ability to plug in IMS
providers.

Changes in this J2EE platform specification include support for deploying
class libraries independently of any application and the conversion of deployment
descriptor DTDsto XML Schemas.

Other J2EE APIs have been enhanced as well. For additional details, see each
of the referenced specifications.

EE.2.15 Changesin JavaEE 5

First, as you've probably noticed, thisrelease of the platform has anew name—Java
Patform, Enterprise Edition, or Java EE for short. This new name getsrid of the
confusing “2” while emphasizing even in the short name that thisis a Javaplatform.
Previous versions are still referred to using the old name “ J2EE”.

The focus of Java EE 5 is ease of development. To simplify the development
process for programmers just starting with Java EE, or developing small to
medium applications, we've made extensive use of Java language annotations that

Final Release

CHANGESIN JAVA EE5 25

were introduced by J2SE 5.0. Annotations reduce or eliminate the need to deal
with Java EE deployment descriptors in many cases. Even large applications can
benefit from the simplifications provided by annotations.

One of the major uses of annotations isto specify injection of resources and
other dependenciesinto Java EE components. I njection augments the existing
JNDI lookup capability to provide anew simplified model for applicationsto gain
access to the resources needed from the operational environment. Injection also
workswith deployment descriptors to allow the deployer to customize or override
resource settings specified in the application’s source code.

The use of annotations is made even more effective by providing better
defaults. Better default behavior and better default configuration allows most
applications to get the behavior they want most of the time, without the use of
either annotations or deployment descriptorsin many cases. When the default is
not what the application wants, a simple annotation can be used to specify the
required behavior or configuration.

The combination of annotations and better defaults has greatly simplified the
development of applications using Enterprise JavaBeans technology and
applications defining or using web services. Enterprise beans are now
dramatically simpler to develop. Web services are much easier to develop using
the annotations defined by the Web Services M etadata specification.

The area of web services continues to evolve at arapid pace. To provide the
latest web services support, the JAX-RPC technology has evolved into the JAX-
WS technology, which makes heavy use of the JAXB technology to bind Java
objectsto XML data. Both JAX-WS and JAXB are new to this version of the
platform.

Major additions to Java EE 5 include the JSTL and JSF technol ogies that
simplify development of web applications, and the Java Persistence API being
developed by the EJB 3.0 expert group that greatly simplifies mapping Java
objects to databases.

Minor additionsinclude the StAX API for XML parsing. Most APIsfrom
previous versions have been updated with small to medium improvements.

26

EE.2.16 Changesin Java EE 6

Note — This section will befilled in ahead of the final release of this specifica
tion.

Final Release

cureren EE.3

Securityl

T his chapter describes the security requirements for the Java™ Platform,
Enterprise Edition (Java EE) that must be satisfied by Java EE products.

In addition to the Java EE requirements, each Java EE Product Provider will
determine the level of security and security assurances that will be provided by
their implementation.

EE.3.1 I ntroduction

Almost every enterprise has security requirements and specific mechanisms and
infrastructure to meet them. Sensitive resources that can be accessed by many users,
or that often traverse unprotected open networks (such as the Internet) need to be
protected.

Although the quality assurances and implementation details may vary, they all
share some of the following characteristics:

» Authentication: The means by which communicating entities (for example,
client and server) proveto one another that they are acting on behalf of specific
identities that are authorized for access.

» Access control for resources. The means by which interactions with resourc-
es are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

» Dataintegrity: The means used to prove that information has not been modi-
fied by athird party (some entity other than the source of the information).
For example, arecipient of data sent over an open network must be able to de-
tect and discard messages that were modified after they were sent.

27

» Confidentiality or Data Privacy: The means used to ensure that information
is made available only to users who are authorized to access it.

» Non-repudiation: The means used to prove that a user performed some ac-
tion such that the user cannot reasonably deny having done so.

» Auditing: The means used to capture a tamper-resistant record of security re-
lated eventsfor the purpose of being ableto evaluate the effectiveness of secu-
rity policies and mechanisms.

This chapter specifies how Java EE platform requirements address security
requirements, and identifies requirements that may be addressed by Java EE
Product Providers. Finally, issues being considered for future versions of this
specification are briefly mentioned in Section EE.3.7, “Future Directions’.

EE.3.2 A Simple Example

The security behavior of a Java EE environment may be better understood by
examining what happensin a simple application with aweb client, a JSP user
interface, and enterprise bean business logic. (The example is hot meant to specify
requirements.)

In this example, the web client relies on the web server to act asits
authentication proxy by collecting user authentication data from the client and
using it to establish an authenticated session.

Step 1: Initial Request
The web client requests the main application URL, shown in Figure EE.3-1.

Web Server

Web Client

Reqguest access to »
protected resource

Figure EE.3-1 Initial Request

Sincethe client has not yet authenticated itself to the application environment,
the server responsible for delivering the web portion of the application (here-
after referred to as “web server”) detects this and invokes the appropriate
authentication mechanism for this resource.

Step 2: Initial Authentication

Final Release

ASIMPLEEXAMPLE

The web server returns a form that the web client uses to collect authentica-
tion data (for example, username and password) from the user. The web client
forwards the authentication datato the web server, where it is validated by the
web server, as shownin Figure EE.3-2.

Web Server
Web Client F
orm
(credential
Authentication data
FigureEE.3-2 Initial Authentication

The validation mechanism may be local to the server, or it may leverage the
underlying security services. On the basis of the validation, the web server
sets a credential for the user.

Step 3: URL Authorization

The credentia is used for future determinations of whether the user is autho-
rized to accessrestricted resources it may request. The web server consultsthe
security policy (derived from the deployment descriptor) associated with the
web resource to determine the security roles that are permitted access to the
resource. The web container then tests the user’s credential against each role
to determine if it can map the user to therole. Figure EE.3-3 shows this pro-
Cess.

Web Server
Web Client
>
Request access to E
eq .3 | credential g |IsPrserviet
protected resource & Object
5
Session
Context

FigureEE.3-3 URL Authorization

The web server's evaluation stops with an “is authorized” outcome when the
web server is able to map the user to arole. A “not authorized” outcomeis
reached if the web server is unable to map the user to any of the permitted
roles.

30

Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URL -
request, as shown in Figure EE.3-4.

Web Server
Web Client
< Result of request
credential ISP S?M e
) Object
Post to business logic
Session
Context

Figure EE.3-4 Fulfilling the Original Request

In our example, the response URL of a JSP page is returned, enabling the user
to post form data that needs to be handled by the business logic component of
the application.

Step 5: Invoking Enterprise Bean Business M ethods

The JSP page performs the remaote method call to the enterprise bean, using
the user’s credential to establish a secure association between the JSP page
and the enterprise bean (as shown in Figure EE.3-5). The association is
implemented as two related security contexts, one in the web server and one

in the EJB container.

Credential used to
establish security association

Web Server EJB Container
Web Client

JSP/serviet o call > E
credential Object remote ¢ Ey
)

Session Security > Security

Context Context Context
Figure EE.3-5 Invoking an Enterprise Bean Business Method

The EJB container is responsible for enforcing access control on the
enterprise bean method. It consults the security policy (derived from the
deployment descriptor) associated with the enterprise bean to determine the
security rolesthat are permitted access to the method. For each role, the EJB

Final Release

SECURITYARCHITECTURE

container uses the security context associated with the call to determineif it can
map the caller to therole.

The container’s evaluation stops with an “is authorized” outcome when the
container is able to map the caller’s credential to arole. A “not authorized”
outcome is reached if the container is unable to map the caller to any of the
permitted roles. A “not authorized” result causes an exception to be thrown by the
container, and propagated back to the calling JSP page.

If the call “is authorized”, the container dispatches control to the enterprise
bean method. The result of the bean’'s execution of the call is returned to the JSP,
and ultimately to the user by the web server and the web client.

EE.3.3 Security Architecture

This section describes the Java EE security architecture on which the security
requirements defined by this specification are based.

EE.3.3.1 Goals

The following are goas for the Java EE security architecture:

1. Portahility: The Java EE security architecture must support the Write Once,
Run Anywhere™ application property.

2. Transparency: Application Component Providers should not have to know
anything about security to write an application.

3. Isolation: The Java EE platform should be able to perform authentication and
access control according to instructions established by the Deployer using de-
ployment attributes, and managed by the System Administrator.

Note that divorcing the application from responsibility for security ensures
greater portability of Java EE applications.

4. Extensibility: Theuseof platform servicesby security aware-applications must
not compromise application portability.
This specification provides APIsin the component programming model for

interacting with container/server security information. Applications that
restrict their interactions to the provided APIs will retain portability.

5. Flexibility: The security mechanisms and declarations used by applications un-
der this specification should not impose a particular security policy, but facil-

31

itate the implementation of security policies specific to the particular Java EE
installation or application.

6. Abstraction: An application component’s security requirements will be logi-
cally specified using deployment descriptors. Deployment descriptors will
specify how security roles and access requirements are to be mapped into en-
vironment-specific security roles, users, and policies. A Deployer may choose
to modify the security propertiesin ways consistent with the deployment envi-
ronment. The deployment descriptor should document which security proper-
ties can be modified and which cannot.

7. Independence: Required security behaviors and deployment contracts should
be implementable using a variety of popular security technologies.

8. Compatihility testing: The Java EE security requirements architecture must be
expressed in amanner that allowsfor an unambiguous determination of wheth-
er or not an implementation is compatible.

9. Secure interoperability: Application components executing in a Java EE prod-
uct must be able to invoke services provided in a Java EE product from a dif-
ferent vendor, whether with the same or a different security policy. The
services may be provided by web components or enterprise beans.

EE.3.3.2 Non Goals

The following are not goals for the Java EE security architecture:

1. This specification does not dictate a specific security policy. Security policies
for applications and for enterprise information systems vary for many reasons
unconnected with this specification. Product Providers can provide the tech-
nology needed to implement and administer desired security policieswhile ad-
hering to the regquirements of this specification.

2. This specification does not mandate a specific security technology, such as
Kerberos, PK, NIS+, or NTLM.

3. This specification does not require that the Java EE security behaviors be uni-
versally implementable using any or all security technologies.

4. This specification does not provide any warranty or assurance of the effective
security of a Java EE product.

Final Release

SECURITYARCHITECTURE

EE.3.3.3 Terminology

This section introduces the terminology that is used to describe the security
requirements of the Java EE platform.

Principal

A principal isan entity that can be authenticated by an authentication protocol
in asecurity service that is deployed in an enterprise. A principal isidentified
using a principal name and authenticated using authentication data. The con-
tent and format of the principal name and the authentication data can vary
depending upon the authentication protocol.

Security Policy Domain

A security policy domain, also referred to as a security domain, is ascope
over which acommon security policy is defined and enforced by the security
administrator of the security service.

A security policy domain is also sometimes referred to as arealm. This speci-
fication uses the security policy domain, or security domain, terminology.

Security Technology Domain

A security technology domain is the scope over which the same security
mechanism (for example Kerberos) is used to enforce a security policy.

A single security technology domain may include multiple security policy
domains, for example.

Security Attributes

A set of security attributes is associated with every principal. The security
attributes have many uses (for example, access to protected resources and
auditing of users). Security attributes can be associated with a principal by an
authentication protocol and/or by the Java EE Product Provider.

The Java EE platform does not specify what security attributes are associated
with a principal.

Credential

A credential contains or references information (security attributes) used to
authenticate a principal for Java EE product services. A principal acquiresa
credential upon authentication, or from another principal that allowsits cre-

dential to be used (delegation).

This specification does not specify the contents or the format of a credential.
The contents and format of a credential can vary widely.

EE.3.34 Container Based Security

Security for componentsis provided by their containersin order to achieve the goals
for security specified above in a Java EE environment. A container provides two
kinds of security (discussed in the following sections):

 Declarative security
» Programmatic security

EE.3.34.1 Declarative Security

Declarative security refersto the means of expressing an application’s security
structure, including security roles, access control, and authenti cation regquirements
in aform external to the application. The deployment descriptor isthe primary
vehicle for declarative security in the Java EE platform.

A deployment descriptor is a contract between an Application Component
Provider and a Deployer or Application Assembler. It can be used by an
application programmer to represent an application’s security related
environmental requirements. A deployment descriptor can be associated with
groups of components.

A Deployer maps the deployment descriptor’s representation of the
application’s security policy to a security structure specific to the particular
environment. A Deployer uses a deployment tool to process the deployment
descriptor.

At runtime, the container uses the security policy security structure derived
from the deployment descriptor and configured by the Deployer to enforce
authorization (see Section EE.3.3.6, “Authorization Modd”).

EE.3.3.4.2 Programmatic Security

Programmatic security refersto security decisions made by security aware
applications. Programmatic security is useful when declarative security aloneis not
sufficient to express the security model of the application. The API for

Final Release

SECURITYARCHITECTURE

programmiatic security consists of two methods of the EJB EJBContext interface and
two methods of the servlet HttpServietRequest interface:

- isCallerInRole (EJBContext)

- getCallerPrincipal (EJBContext)

- isUserInRole (HttpServletRequest)

- getUserPrincipal (HttpServletRequest)

These methods allow components to make business logic decisions based on
the security role of the caller or remote user. For example they alow the
component to determine the principal name of the caller or remote user to useasa
database key. (Note that the form and content of principal nameswill vary widely
between products and enterprises, and portable components will not depend on
the actual contents of a principal name. Due to principal name mapping, the same
logical principal may have different names in different containers, although
usually it will be possible to configure a single product to use consistent principal
names. In particular, if aprincipal hameis used as akey into a database table, and
that database table is accessed from multiple components, containers, or products,
the same logical principal may map to different entriesin the database.)

EE.3.35 Distributed Security

Some Product Providers may produce Java EE products in which the containers for
various component types are distributed. In a distributed environment,
communication between Java EE components can be subject to security attacks (for
example, data modification and replay attacks).

Such threats can be countered by using a secure association to secure
communications. A secure association is shared security state information that
establishes the basis of a secure communication between components.
Establishing a secure association could involve several steps, such as.

1. Authenticating the target principal to the client and/or authenticating the client
to the target principal.

2. Negotiating a quality of protection, such as confidentiality or integrity.
3. Setting up a security context for the association between the components.

Since a container provides security in Java EE, secure associations for a
component are typically established by a container. Secure associations for web

35

36

access are specified here. Secure associations for access to enterprise beans are
described in the EJB specification.

Product Providers may allow for control over the quality of protection or
other aspects of secure association at deployment time. Applications can specify
their requirements for access to web resources using elementsin their deployment
descriptor.

This specification does not define mechanisms that an Application
Component Provider can use to communicate requirements for secure
associations with an enterprise bean.

EE.3.3.6 Authorization M odel

The Java EE authorization model is based on the concept of security roles. A
security roleisalogical grouping of usersthat is defined by an Application
Component Provider or Assembler. A Deployer mapsrolesto security identities (for
example principals, and groups) in the operational environment. Security roles are
used with both declarative security and programmatic security.

Declarative authorization can be used to control access to an enterprise bean
method and is specified in the enterprise bean deployment descriptor. An
enterprise bean method can be associated with amethod-permission lementin
the deployment descriptor. The method-permission element contains alist of
methods that can be accessed by a given security role. If the calling principal isin
one of the security roles allowed access to a method, the principal is allowed to
execute the method. Conversely, if the calling principal isin none of theroles, the
caler isnot allowed to execute the method. Access to web resources can be
protected in a similar manner.

Security roles are used in the EJBContext method isCallerInRole and the
HttpServletRequest method isUserInRole. Each method returns true if the
calling principal isin the specified security role.

EE.3.3.6.1 Role Mapping

Enforcement of security constraints on web resources or enterprise beans, whether
programmatic or declarative, depends upon determination of whether the principal
associated with an incoming request isin a given security role. A container makes
this determination based on the security attributes of the calling principal. For
example,

1. A Deployer may have mapped a security roleto auser group in the operational

Final Release

SECURITYARCHITECTURE 37

environment. In this case, the user group of the calling principal isretrieved
fromitssecurity attributes. The principal isin the security roleif theprincipal’s
user group matches a user group to which the security role has been mapped.

2. A Deployer may have mapped a security role to aprincipal name in a security
policy domain. In this case, the principal name of the calling principal is re-
trieved from its security attributes. If this principal name isthe same asaprin-
cipal name to which the security role was mapped, the calling principal isin
the security role.

The source of security attributes may vary across implementations of the Java
EE platform. Security attributes may be transmitted in the calling principal’s
credential or in the security context. In other cases, security attributes may be
retrieved from atrusted third party, such as a directory service or a security
service.

EE.3.3.7 HTTP Login Gateways

Secure interoperability between enterprise beans in different security policy
domainsisaddressed in the EJB specification. In addition, acomponent may choose
tologinto aforeign server viaHTTP. An application component can be configured
to use SSL mutual authentication for security when accessing a remote resource
usng HTTP. Applicationsusing HTTPin thisway may chooseto use XML or some
other structured format, rather than HTML.

We call the use of HTTP with SSL mutual authentication to access a remote
service an HTTP Login Gateway. Requirementsin this area are specified in
Section EE.3.3.8.1, “Authentication by Web Clients.”

EE.3.3.8 User Authentication

User authentication is the process by which a user proves his or her identity to the
system. This authenticated identity is then used to perform authorization decisions
for accessing Java EE application components. An end user can authenticate using
either of the two supported client types:

» Web client
« Application client

38

EE.3.3.8.1 Authentication by Web Clients

Itisrequired that aweb client be able to authenticate a user to aweb server using
any of the following mechanisms. The Deployer or System Administrator
determines which method to apply to an application or to a group of applications.

» HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism supported by the
HTTP protocol. This mechanism is based on a username and password. A
web server requests aweb client to authenticate the user. As part of the
request, the web server passes the realmin which the user isto be authenti-
cated. The web client abtains the username and the password from the user
and transmits them to the web server. The web server then authenticates the
user in the specified realm (referred to as HTTP Realmin this document).

HTTP Basic Authentication is not secure. Passwords are sent in simple
base64 encoding. The target server is not authenticated. Additional protection
can be applied to overcome these weaknesses. The password may be pro-
tected by applying security at the transport layer (for example HTTPS) or at
the network layer (for example, IPSEC or VPN).

Despiteitslimitations, the HT TP Basic Authentication mechanismisincluded
in this specification because it iswidely used in form based applications.

o HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authenti-
cation mechanism. This mechanism requires the user to possess a Public Key
Certificate (PKC). Currently, aPKC israrely used by end users on the Inter-
net. However, it is useful for e-commerce applications and also for asingle-
signon from within the browser. For these reasons, HTTPS client authentica-
tionisarequired feature of the Java EE platform.

» Form Based Authentication

Thelook and fedl of alogin screen cannot be varied using the web browser’'s
built-in authentication mechanisms. This specification introduces the ability
to package standard HTML or servlet/JSP based forms for logging in, allow-
ing customization of the user interface. The form based authentication mecha-
nism introduced by this specification is described in the servlet specification.

Final Release

SECURITYARCHITECTURE

HTTP Digest Authentication is not widely supported by web browsers and
hence is not required.

A web client can employ aweb server asits authentication proxy. In this case,
aclient’scredential is established in the server, where it may be used by the server
for various purposes:. to perform authorization decisions, to act asthe client in
callsto enterprise beans, or to negotiate secure associations with resources.
Current web browsers commonly rely on proxy authentication.

EE.3.3.8.2 Web Single Signon

HTTPisadateless protocol. However, many web applications need support for
sessions that can maintain state across multiple requests from aclient. Therefore, it
isdesirable to:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same login session to represent a user to all the applications
that they access.

3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Credentials that are acquired through a web login process are associated with
asession. The container uses the credentials to establish a security context for the
session. The container uses the security context to determine authorization for
access to web resources and for the establishment of secure associations with
other components (including enterprise beans).

EE.3.3.8.3 Login Session

In the Java EE platform, login session support is provided by aweb container. When
auser successfully authenticates with aweb server, the container establishesalogin
session context for the user. The login session contains the credential s associated
with the user.

EE.3.3.84 Authentication by Application Clients

Application clients (described in detail in Chapter EE.10, “Application Clients) are
client programs that may interact with enterprise beans directly (that is without the

39

40

help of aweb browser and without traversing aweb server. Application clients may
also access web resources.

Application clients, like the other Java EE application component types,
execute in amanaged environment that is provided by an appropriate container.
Application clients are expected to have accessto a graphical display and input
device, and are expected to communicate with a human user.

Application clients are used to authenticate end users to the Java EE platform,
when the users access protected web resources or enterprise beans.

EE.3.3.9 Lazy Authentication

Thereisa cost associated with authentication. For example, an authentication
process may require exchanging multiple messages across the network. Therefore, it
is desirable to use lazy authentication, that is perform authentication only when it is
needed. With lazy authentication, a user is not required to authenticate until thereis
areguest to access a protected resource.

Lazy authentication can be used with first-tier clients (applets, application
clients) when they request access to protected resources that require
authentication. At that point the user can be asked to provide appropriate
authentication data. If a user is successfully authenticated, the user is allowed to
access the resource.

EE.3.4 User Authentication Requirements

The Java EE Product Provider must meet the following requirements concerning
user authentication.

EE.3.4.1 Login Sessions

All Java EE web servers must maintain alogin session for each web user. It must be
possible for alogin session to span more than one application, alowing auser to log

L While the client is stateless with respect to authentication, the client re-
guiresthat the server act asits proxy and maintain itslogin context. A ref-
erence to the login session state is made available to the client through
cookies or URL re-writing. If SSL mutual authentication is used as the
authentication protocol, the client can manage its own authentication
context, and need not depend on references to the login session state.

Final Release

USERAUTHENTICATION REQUIREMENTS

in once and access multiple applications. The required login session support is
described in the servlet specification. This requirement of a session for each web
user supports single signon.

Applications can remain independent of the details of implementing the
security and maintenance of login information. The Java EE Product Provider has
the flexibility to choose authentication mechanisms independent of the
applications secured by these mechanisms.

Lazy authentication must be supported by web servers for protected web
resources. When authentication is required, one of the three required login
mechanisms listed in the next section may be used.

EE.34.2 Required L ogin Mechanisms

All Java EE products are required to support three login mechanisms: HTTP basic
authentication, SSL mutual authentication, and form-based login. An applicationis
not required to use any of these mechanisms, but they are required to be available
for any application’s use.

EE.34.2.1 HTTP Basic Authentication

All Java EE products are required to support HT TP basi ¢ authentication (RFC2068).
Platform Providers are a so required to support basic authentication over SSL.

EE.34.2.2 SSL Mutual Authentication

SSL 3.0% and the means to perform mutual (client and server) certificate based
authentication are required by this specification.

All Java EE products must support the following cipher suites to ensure
interoperable authentication with clients:

- TLS_RSA_WITH_RC4_128_MD5

- SSL_RSA_WITH_RC4_128_MD5

- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

- SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

- TLS_RSA_EXPORT_WITH_RC4_40_MD5

- SSL_RSA_EXPORT_WITH_RC4_40_MD5

- TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

2 The SSL 3.0 specification is available at: http://home.netscape.com/
eng/ss13

41

42

- SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

These cipher suites are supported by the major web browsers and meet the
U.S. government export restrictions.

EE.3.4.2.3 Form Based Login

The web application deployment descriptor contains an el ement that causes a Java
EE product to associate an HTML form resource (perhaps dynamically generated)
with the web application. If the Deployer chooses this form of authentication (over
HTTP basic, or SSL certificate based authentication), this form must be used asthe
user interface for login to the application.

Theform based login mechanism and web application deployment descriptors
are described in the servlet specification.

EE.3.4.3 Unauthenticated Users

Web containers are required to support access to web resources by clients that have
not authenticated themsel ves to the container. Thisis the common mode of accessto
web resources on the Internet.

A web container reports that no user has been authenticated by returning nu11
from the HttpServletRequest method getUserPrincipal. Thisis different than
the corresponding result for EJB containers. The EJB specification requires that
the EJBContext method getCallerPrincipal awaysreturn avalid Principal
object. The method can never return null.

In Java EE products that contain both aweb container and an EJB container,
components running in aweb container must be able to call enterprise beans even
when no user has been authenticated in the web container. When acall ismadein
such a case from a component in aweb container to an enterprise bean, a Java EE
product must provide a principal for usein the call.

A Java EE product may provide a principal for use by unauthenticated callers
using many approaches, including, but not limited to:

» Always use a single distinguished principal.
» Useadifferent distinguished principal per server, or per session, or per appli-
cation.

* Allow the deployer or system administrator to choose which principal to use
through the Run As capability of the web and enterprise bean containers.

Final Release

USERAUTHENTICATION REQUIREMENTS

This specification does not specify how a Java EE product should choose a
principal to represent unauthenticated users, although future versions of this
specification may add requirements in this area. Note that the EJB specification
does include requirements in this area when using the EJB interoperability
protocol. Applications are encouraged to use the Run As capability in cases where
the web component may be unauthenticated and needs to call EJB components.

EE.344 Application Client User Authentication

The application client container must provide authentication of application usersto
satisfy the authentication and authorization constraints enforced by the enterprise
bean containers and web containers. The techniques used may vary with the
implementation of the application client container, and are beyond the control of the
application. The application client container may integrate with a Java EE product’s
authentication system, to provide a single signon capability, or the container may
authenticate the user when the application is started. The container may delay
authentication until thereis arequest to access a protected resource or enterprise
bean.

The container will provide an appropriate user interface for interactions with
the user to gather authentication data. In addition, an application client may
provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section EE.10.7, “ Java EE Application
Client XML Schema’” for details). The Deployer may override the callback
handler specified by the application and require use of the container’s default
authentication user interface instead.

If use of a callback handler has been configured by the Deployer, the
application client container must instantiate an object of thisclassand useit for all
authentication interactions with the user. The application’s callback handler must
support al the callback objects specified in the javax.security.auth.callback
package.

Application clients may execute in an environment controlled by a Java SE
security manager and are subject to the security permissions defined in
Section EE.6.2, “ Java Platform, Standard Edition (Java SE) Requirements.”
Although this specification does not define the relationship between the operating
system identity associated with arunning application client and the authenticated
user identity, support for single signon requires that the Java EE product be able to

43

relate these identities. Additional application client requirements are described in
Chapter EE.10.7 of this specification.

EE.3.4.5 Resour ce Authentication Requirements

Resources within an enterprise are often deployed in security policy domains
different from the security policy domain of the application component. The wide
variance of authentication mechanisms used to authenticate the caller to resources
leads to the requirement that a Java EE product provide the means to authenticatein
the security policy domain of the resource.

A Product Provider must support both of the following:

1. Configured Identity. A Java EE container must be able to authenticate for ac-
cessto theresource using aprincipal and authentication data specified by aDe-
ployer at deployment time.The authentication must not depend in any way on
data provided by the application components. Providing for the confidential
storage of the authentication information is the responsibility of the Product
Provider.

2. Programmatic Authentication. The Java EE product must provide for spec-
ification of the principa and authentication data for a resource by the applica
tion component at runtime using appropriate APIs. The application may obtain
the principal and authentication data through a variety of mechanisms, includ-
ing receiving them as parameters, obtaining them from the component’ s envi-
ronment, and so forth.

In addition, the following techniques are recommended but not required by
this specification:

3. Principal M apping. A resource can have aprincipal and attributesthat are de-
termined by amapping from the identity and security attributes of the request-
ing principal. In this case, aresource principal is not based on inheritance of
the identity or security attributes from a requesting principal, but getsitsiden-
tity and security attributes based on the mapping.

4. Caller Impersonation. A resource principal acts on behalf of arequesting
principal. Acting on behalf of a caller principa requires delegation of the call-
er’ sidentity and credentials to the underlying resource manager. In some sce-
narios, arequesting principal can be adelegate of aninitiating principal and the
resource principal is transitively impersonating an initiating principal.

Final Release

AUTHORIZATIONREQUIREMENTS 45

The support for principal delegation istypicaly specific to a security mecha-
nism. For example, Kerberos supports a mechanism for the delegation of
authentication. (Refer to the Kerberos v5 specification for more details.)

5. CredentialsM apping. Thistechnique may be used when an application server
and an EIS support different authentication domains. For example:

a. Theinitiating principal may have been authenticated and have public key
certificate-based credentials.

b. Thesecurity environment for the resource manager may be configured with
the Kerberos authentication service.

The application server is configured to map the public key certificate-based
credential s associated with the initiating principa to the Kerberos credentials.

Additional information on resource authentication requirements can be found
in the Connector specification.

EE.3.5 Authorization Requirements

To support the authorization models described in this chapter, the following
requirements are imposed on Java EE products.

EE.35.1 Code Authorization

A Java EE product may restrict the use of certain Java SE classes and methods to
secure and ensure proper operation of the system. The minimum set of permissions
that a Java EE product is required to grant to a Java EE application is defined in
Section EE.6.2, “ Java Platform, Standard Edition (Java SE) Requirements.” All
Java EE products must be capable of deploying application components with
exactly these permissions.

A Java EE Product Provider may choose to enable selective access to
resources using the Java protection model. The mechanism used is JavaEE
product dependent.

A future version of the Java EE deployment descriptor definition (see
Chapter EE.8, “Application Assembly and Deployment”) may make it possible to
express additional permissions that a component needs for access.

46

EE.3.5.2 Caller Authorization

A Java EE product must enforce the access control rules specified at deployment
time (see Section EE.3.6, “ Deployment Requirements”) and more fully described in
the EJB and servlet specifications.

EE.3.5.3 Propagated Caller | dentities.

In aJava EE product that contains an EJB container, it must be possible to configure
the Java EE product so that a propagated caller identity isused in all authorization
decisions. With this configuration, for al callsto al enterprise beansfrom asingle
application within a single Java EE product, the principal name returned by the
EJBContext Method getCallerPrincipal must be the same asthat returned by the
first enterprise bean in the call chain. If the first enterprise bean in the call chainis
called by aservlet or JSP page, the principal name must be the same asthat returned
by theHttpServletRequest method getUserPrincipal inthe calling servlet or JSP
page. (However, if the HttpServletRequest method getUserPrincipal returns
nu11, the principa used in callsto enterprise beansis not specified by this
specification, although it must still be possible to configure enterprise beansto be
callable by such components.)

Note that this does not require delegation of credentials, only identification of
the caller. A single principal must be the principal used in authorization decisions
for accessto all enterprise beansin the call chain. The requirementsin this section
apply only when a Java EE product has been configured to propagate caller
identity.

EE.3.54 Run Asldentities

Java EE products must also support the Run As capability that allowsthe
Application Component Provider and the Deployer to specify an identity under
which an enterprise bean or web component must run. In this caseit isthe Run As
identity that is propagated to subsequent EJB components, rather than the original
caller identity.

Note that this specification doesn’'t specify any relationship between the Run
Asidentity and any underlying operating system identity that may be used to
access system resources such as files. However, the Java Authorization Contract
for Containers specification does specify the relationship between the Run As
identity and the access control context used by the Java SE security manager.

Final Release

DEPLOYMENTREQUIREMENTS

EE.3.6 Deployment Requirements

All Java EE products must implement the access control semantics described in all
included component specifications, such asthe EJB, JSP, and servlet specifications,
and provide a means of mapping the deployment descriptor security rolesto the
actual roles exposed by a Java EE product.

While most Java EE products will alow the Deployer to customize the role
mappings and change the assignment of roles to methods, all Java EE products
must support the ability to deploy applications and components using exactly the
mappings and assignments specified in their deployment descriptors.

As described in the EJB specification and the servlet specification, a Java EE
product must provide a deployment tool or tools capable of assigning the security
roles in deployment descriptors to the entities that are used to determine role
membership at authorization time.

Application developers will need to specify (in the application’s deployment
descriptors) the security requirements of an application in which some
components may be accessed by unauthenticated users as well as authenticated
users (as described above in Section EE.3.4.3, “Unauthenticated Users’).
Applications express their security requirements in terms of security roles, which
the Deployer maps to users (principals) in the operational environment at
deployment time. An application might define arole representing al
authenticated and unauthenticated users and configure some enterprise bean
methods to be accessible by thisrole.

To support such usage, this specification requiresthat it be possible to map an
application defined security role to the universal set of application principals
independent of authentication.

EE.3.7 Future Directions

EE.3.7.1 Auditing

This specification does not specify requirements for the auditing of security relevant
events, nor APIsfor application components to generate audit records. A future
version of this specification may include such a specification for products that
choose to provide auditing.

47

48

EE.3.7.2 I nstance-based Access Control

Some applications need to control accessto their data based on the content of the
data, rather than simply the type of the data. We refer to this as“instance-based”
rather than “ class-based” access control. We hopeto address thisin afuture release.

EE.3.7.3 User Registration

Web-based internet applications often need to manage a set of customers
dynamically, allowing usersto register themselves as new customers. This scenario
was widely discussed in the servlet expert group (JSR-53) but we were unableto
achieve consensus on the appropriate solution. We had to abandon this work for
J2EE 1.3, and were not able to addressit for J2EE 1.4, but hope to pursue it further
inafuturerelease.

Final Release

cunerer EEL4

Transaction M anagement

T his chapter describesthe required Java™ Platform, Enterprise Edition (Java EE)
transaction management and runtime environment.

Product Providers must transparently support transactions that involve
multiple components and transactional resources within a single Java EE product,
as described in this chapter. This requirement must be met regardless of whether
the Java EE product is implemented as a single process, multiple processes on the
same network node, or multiple processes on multiple network nodes.

If the following components are included in a Java EE product, they are
considered transactional resources and must behave as specified here:

» JDBC connections
* JMS sessions

* Resource adapter connections for resource adapters specifying the
XATransaction transaction level

EE.4.1 Overview

A Java EE Product that includes both a servlet container and an EJB container must
support atransactional application comprised of combinations of web application
components accessing multiple enterprise beans within asingle transaction. If the
Java EE product a so includes support for the Connectors specification, each
component may also acquire one or more connections to access one or more
transactional resource managers.

49

50

connections

connection .

EJBean

2a\‘C:)/

connection

EJBean .

2b

connection
EJBean
2cC

connection

EJBean .

2d

Client

EJBean
1b

connection .

slabeuew 82IN0sal [euondeSURI] 8I0W IO BUQ

For example, in Figure EE.4-1, the cal tree starts from a servlet or JSP page
accessing multiple enterprise beans, which in turn may access other enterprise
beans. The components access resource managers via connections.
FigureEE.4-1 Servlets/JSP Pages Accessing Enterprise Beans

The Application Component Provider specifies, using a combination of
programmeatic and declarative transaction demarcation APIs, how the platform
must manage transactions on behalf of the application.

For example, the application may require that all the componentsin Figure
EE.4-1 access resources as part of a single transaction. The Platform Provider
must provide the transaction capabilities to support such a scenario.

This specification does not define how the components and the resources are
partitioned or distributed within a single Java EE product. In order to achieve the
transactional semantics required by the application, the Java EE Product Provider
is free to execute the application components sharing a transaction in the same
Javavirtual machine, or distribute them across multiple virtual machines.

Final Release

REQUIREMENTS

The rest of this chapter describes the transactional requirements for a Java EE
product in more detail.

EE.4.2 Requirements

This section defines the transaction support requirements of Java EE Products that
must be supported by Product Providers.

EE.4.2.1 Web Components

Servlets and JSP pages demarcate a transaction using the
javax.transaction.UserTransaction interface which is defined in the JTA
specification. They may access multiple resource managers and invoke multiple
enterprise beans within a single transaction. The specified transaction context is
automatically propagated to the enterprise beans and transactional resource
managers. The result of the propagation may be subject to the enterprise bean
transaction attributes (for example, a bean may be required to use Container
Managed Transactions).

Servlet filters and web application event listeners must not demarcate
transactions using the javax. transaction.UserTransaction interface. Serviet
filters may use transactional resourcesin alocal transaction mode within their
doFi1ter methods but should not use any transactional resources in the methods of
any objects used to wrap the request or response objects.

EE4.2.1.1 Transaction Regquirements
The Java EE platform must meet the following requirements:

» The Java EE platform must provide an object implementing the
javax.transaction.UserTransaction interface to all web components. The
platform must publish the userTransaction object inthe Java™ Naming and
Directory Interface (JNDI) name space available to web components under the
name java:comp/UserTransaction.

« If aweb component invokes an enterprise bean from athread associated with

a JTA transaction, the Java EE platform must propagate the transaction con-
text with the enterprise bean invocation. Whether the target enterprise bean

51

52

will be invoked in this transaction context or not is determined by the rules
defined in the EJB specification.

Note that this transaction propagation requirement applies only to invocations
of enterprise beans in the same Java EE product instance® as the invoking
component. Invocations of enterprise beans in ancther Java EE product
instance (for example, using the EJB interoperability protocol) need not prop-
agate the transaction context. See the EJB specification for details.

* If aweb component accesses a transactional resource manager from athread
associated with a JTA transaction, the Java EE platform must ensure that the
resource access is included as part of the JTA transaction.

« |f aweb component creates athread, the Java EE platform must ensure that the
newly created thread is not associated with any JTA transaction.

EE.4.212 Transaction Non-Requirements

The Product Provider is not required to support the importing of atransaction
context from a client to aweb component.

The Product Provider is not required to support transaction context
propagation viaan HTTP request across web components. The HTTP protocol
does not support such transaction context propagation. When aweb component
associated with atransaction makes an HTTP request to another web component,
the transaction context is not propagated to the target servlet or page.

However, when aweb component is invoked through the RequestDispatcher
interface, any active transaction context must be propagated to the called servlet
or JSP page.

L A product instance corresponds to asingle installation of a Java EE prod-
uct. A single product instance might use multiple operating system pro-
cesses, or might support multiple host machines as part of a distributed
container. In contrast, it might be possible to run multiple instances of a
product on asingle host machine, or possibly even in asingle Javavirtual
machine, for example, as part of a virtual hosting solution. The transac-
tion propagation requirement applieswithin asingle product instance and
isindependent of the number of Java virtual machines, operating system
processes, or host machines used by the product instance.

Final Release

REQUIREMENTS

EE.4.2.2 Transactionsin Web Component Life Cycles

Transactions may not span web requests from aclient on the network. A web
component starts atransaction in the service method of aservlet (or, for aJSP
page, the service method of the equivalent JSP page Implementation Class) and it
must be completed before the service method returns to the network client.
Returning from the service method to the network client with an active transaction
context is an error. The web container is required to detect this error and abort the
transaction.

As specified above in Section EE.4.2.1.2, “ Transaction Non-Requirements,”
requests made within aweb container using the RequestDispatcher must
propagate any transaction context to the called class. Unless the called class
commits or aborts the transaction, the transaction must remain active when the
called class returns.

If aservlet that is called viathe RequestDispatcher starts atransaction, the
behavior of the container with regard to that transaction is unspecified when the
servlet returns from its service method. The web container may throw an
expcetion to the caller, abort the transaction and return to the caller without error,
or propagate the transaction context back to the caller. Portable servlets will
complete any transaction they start before returning from the service method.

EE.4.2.3 Transactions and Threads

There are many subtle and complex interactions between the use of transactional
resources and threads. To ensure correct operation, web components should obey
the following guidelines, and the web container must support at least these usages.

» JTA transactions should be started and completed in the thread in which the
service method is called. Additional threads that are created for any purpose
should not attempt to start JTA transactions.

 Transactional resources may be acquired and released by athread other than
the service method thread, but should not be shared between threads.

 Transactiona resource objects (for example, JIDBC Connection objects)
should not be stored in static fields. Such objects can only be associated with
onetransaction at atime. Storing them in static fields would make it easy to
erroneously share them between threads in different transactions.

* Web components implementing SingleThreadMode1 may store top-level
transactional resource objectsin classinstance fields. A top-level objectisone

53

acquired directly from a container managed connection factory object (for ex-
ample, aJDBC Connection acquired from aJJDBC ConnectionFactory), as
opposed to other objects acquired from these top-level objects (for example, a
JDBC statement acquired from a JDBC Connection). The web container en-
suresthat requeststo aSingleThreadModel Servlet are serialized and thus only
one thread and one transaction will be able to use the object at atime, and that
the top-level object will be enlisted in any new transaction started by the com-
ponent.

* In web components not implementing SingleThreadModeT, transactional re-
source objects should not be stored in class instance fields, and should be ac-
quired and released within the same invocation of the service method.

» Web components that are called by other web components (using the forward
or include methods) should not store transactional resource objectsin class
instance fields.

 Enterprise beans may be invoked from any thread used by a web component.
Transaction context propagation requirements are described above and in the
EJB specification.

EE.424 Enterprise JavaBeans™ Components

The Java EE Product Provider must provide support for transactions as defined in
the EJB specification.

EE.4.25 Application Clients

The Java EE Product Provider is not required to provide transaction management
support for application clients.

EE.4.2.6 Applet Clients

The Java EE Product Provider is not required to provide transaction management
support for applets.

EE.4.2.7 Transactional JDBC™ Technology Support

A Java EE product must support a JDBC technology database as a transactiona
resource manager. The platform must enable transactional JDBC APl access from
web components and enterprise beans.

Final Release

REQUIREMENTS

It must be possible to access the JDBC technology database from multiple
application components within a single transaction. For example, a servlet may
wish to start a transaction, access a database, invoke an enterprise bean that
accesses the same database as part of the same transaction, and, finally, commit
the transaction.

A Java EE product must provide atransaction manager that is capable of
coordinating two-phase commit operations across multiple XA-capable JIDBC
databases. If a JDBC driver supports the Java Transaction API’s XA interfaces (in
the javax.transaction.xa package), then the Java EE product must be capable of
using the XA interfaces provided by the JDBC driver to accomplish two-phase
commit operations. The Java EE product may discover the XA capabilities of
JDBC drivers through product-specific means, although normally such JDBC
drivers would be delivered as resource adapters using the Connector API.

EE.4.2.8 Transactional JM S Support

A Java EE product must support aJMS provider as atransactional resource
manager. The platform must enable transactional IM S access from servlets, JSP
pages, and enterprise beans.

It must be possible to access the IM S provider from multiple application
components within a single transaction. For example, a servlet may wish to start a
transaction, send a JM'S message, invoke an enterprise bean that also sendsa JMS
message as part of the same transaction, and, finally, commit the transaction.

EE.4.29 Transactional Resource Adapter (Connector) Support

A Java EE product must support resource adapters that use XATransaction mode as
transactional resource managers. The platform must enable transactional accessto
the resource adapter from servlets, JSP pages, and enterprise beans.

It must be possible to access the resource adapter from multiple application
components within asingle transaction. For example, a servlet may wish to start a
transaction, access the resource adapter, invoke an enterprise bean that also
accesses the resource adapter as part of the same transaction, and, finally, commit
the transaction.

55

56

EE.4.3 Transaction Interoper ability

EE.43.1 Multiple Java EE Platform Inter oper ability

This specification does not require the Product Provider to implement any particular
protocol for transaction interoperability across multiple Java EE products. Java EE
compatibility requires neither interoperability among identical Java EE products
from the same Product Provider, nor among heterogeneous Java EE products from
multiple Product Providers.

We recommend that Java EE Product Providers use the 11 OP transaction
propagation protocol defined by OMG and described in the OTS specification
(and implemented by the Java Transaction Service), for transaction
interoperability when using the EJB interoperability protocol based on RMI-110OP.
We plan to require the I OP transaction propagation protocol asthe EJB server
transaction interoperability protocol in afuture release of this specification.

EE.4.3.2 Support for Transactional Resource Managers

This specification requires all Java EE products to support the
javax.transaction.xa.XAResource interface, as specified in the Connector
specification. This specification also requires all Java EE products to support the
javax.transaction.xa.XAResource interface for performing two-phase commit
operations on JDBC driversthat support the JTA XA APIs. This specification does
not require that JDBC drivers or IMS providers use the
javax.transaction.xa.XAResource interface, athough they may usethisinterface
and in al casesthey must meet the transactional resource manager requirements
described in this chapter. In particular, it must be possible to combine operations on
one or more JDBC databases, one or more JM S sessions, one or more enterprise
beans, and multiple resource adapters supporting the XATransaction modeina
single JTA transaction.

EE.4.4 L ocal Transaction Optimization

EE.44.1 Requirements

If atransaction uses a single resource manager, performance may be improved by
using aresource manager specific local optimization. A local transactionistypicaly

Final Release

LOCAL TRANSACTION OPTIMIZATION

more efficient than a global transaction and provides better performance. Local
optimization is not available for transactions that are imported from a different
container.

Containers may choose to provide local transaction optimization, but are not
required to do so. Local transaction optimization must be transparent to a Java EE
application.

The following section describes a possible mechanism for local transaction
optimization by containers.

EE.4.4.2 A Possible Design

This section illustrates how the previously described requirements might be
implemented.

When the first connection to aresource manager is established as part of the
transaction, a resource manager specific local transaction is started on the
connection. Any subsequent connection acquired as part of the transaction that
can share the local transaction on the first connection is allowed to share the local
transaction.

A global transaction is started lazily under the following conditions:

» When a subsequent connection cannot share the resource manager local trans-
action on the first connection, or if it uses a different resource manager.

» When atransaction is exported to a different container.

After the lazy start of aglobal transaction, any subsequent connection
acquired may either share the local transaction on the first connection, or be part
of the global transaction, depending on the resource manager it accesses.

When a transaction completion (commit or rollback) is attempted, there are
two possibilities:

« If only asingle resource manager had been accessed as part of the transaction,
the transaction is completed using the resource manager specific local transac-
tion mechanism.

« If aglobal transaction had been started, the transaction is completed treating
the resource manager local transaction as alast resource in the global 2-phase
commit protocol, that is using the last resource 2-phase commit optimization.

57

58

EE.45 Connection Sharing

When mulltiple connections acquired by a Java EE application use the same resource
manager, containers may choose to provide connection sharing within the same
transaction scope. Sharing connectionstypically resultsin efficient usage of
resources and better performance. Containers are required to provide connection
sharing in certain situations; see the Connector specification for details..

Connections to resource managers acquired by Java EE applications are
considered potentially shared or shareable. A Java EE application component that
intends to use a connection in an unshareable way must provide deployment
information to that effect, to prevent the connection from being shared by the
container. Examples of when this may be needed include situations with changed
security attributes, isolation levels, character settings, and localization
configuration. Containers must not attempt to share connections that are marked
unshareable. If aconnection is not marked unshareable, it must be transparent to
the application whether the connection is actually shared or not.

Java EE application components may use the optional deployment descriptor
element res-sharing-scope to indicate whether a connection to aresource
manager is shareable or unshareable. Containers must assume connections to be
shareableif no deployment hint is provided. Section EE.10.7, “ Java EE
Application Client XML Schema”, the EJB specification, and the servlet
specification provide descriptions of the deployment descriptor element.

Java EE application components may cache connection objects and reuse
them across multiple transactions. Containers that provide connection sharing
must transparently switch such cached connection objects (at dispatch time) to
point to an appropriate shared connection with the correct transaction scope. Refer
to the Connector specification for a detailed description of connection sharing.

EE.4.6 JDBC and JM S Deployment | ssues

The JDBC transaction requirements in Section EE.4.2.7, “ Transactional JDBC™
Technology Support” and the JM S transaction requirementsin Section EE.4.2.8,
“Transactional IM S Support” may impose some restrictions on a Deployer’s
configuration of an application’s JDBC and M S resources. Java EE Product
Providers may impose the restrictions described in this section to meet these
requirements.

Final Release

TWO-PHASECOMMIT SUPPORT

If the deployer configures a non-X A-capable JDBC resource manager in a
transaction, then a Java EE Product Provider may restrict all JIDBC access within
that transaction to that non-XA-capable JDBC resource manager. Otherwise, a
Java EE Product Provider must support use of multiple XA-capable JDBC
resource managers wthin a transaction. In addition, a Java EE Product Provider
may restrict the security configuration of all JIDBC connections within a
transaction to asingle user identity. A Java EE Product Provider is not required to
support transactions where more than one JDBC identity is used. Specifically, this
means that transactions that require the use of more than one JDBC security
identity (which can be done explicitly via component provided user name and
password) may not be portable.

A Java EE Product Provider may make the same restrictions as above,
resulting in atransaction being restricted to a single JM S resource manager and
user identity.

In addition, when both a JDBC resource manager and a JM S resource
manager are used in the same transaction, a Java EE Product Provider may restrict
both to a pairing that allows their combination to deliver the full transactional
semantics required by the application, and may restrict the security identity of
both to asingle identity. To fully support such usage, portable applications that
wish to include JDBC and IM S access in asingle global transaction must not
mark the corresponding transactional resources as “ unshareable”.

Although these restrictions are allowed, it is recommended that Java EE
Product Providers support JDBC and JM S resource managers that provide full
two-phase commit functionality and, as aresult, do not impose these restrictions.

EE.4.7 Two-Phase Commit Support

A Java EE product must support the use of multiple X A-capable resource adapters
in asingle transaction. To support such a scenario, full two-phase commit support is
required. A IM S provider may be provided as an X A-capable resource adapter. In
such acase, it must be possible to include JM S operations in the same global
transaction as other resource adapters. While JDBC drivers are not required to be
XA-capable, aJDBC driver may be delivered as an X A-capable resource adapter. In
such acase, it must be possible to include JDBC operations in the same global
transaction as other X A-capable resource adapters. See also Section EE.4.2.7,
“Transactional JDBC™ Technology Support.”

59

60

EE.4.8 System Administration Tools

Although there are no compatibility requirements for system administration
capabilities, the Java EE Product Provider will typically include toolsthat alow the
System Administrator to perform the following tasks:

* Integrate transactional resource managers with the platform.
» Configure the transaction management parts of the platform.
» Monitor transactions at runtime.

» Receive notifications of abnormal transaction processing conditions (such as
abnormally high number of transaction rollbacks).

Final Release

cunrren EELD

Resources, Naming, and
Injection

T his chapter describes how applications declare dependencies on externa
resources and configuration parameters, and how those items are represented in the
Java EE naming system and can be injected into application components. These
requirements are based on annotations defined in the Java M etadata specification
(JSR-175) and features defined in the Java Naming and Directory Interface™
(INDI) specification. The Resource annotation described here is defined in more
detail in the Common Annotations specification (JSR-250). The EJB annotation
described hereis defined in more detail in the Enterprise JavaBeans specification
(JSR-220). The PersistenceUnit and PersistenceContext annotations described
here are defined in more detail in the Java Persistence Specification (JSR-220).

EE.5.1 Overview
The requirements defined in this chapter address the following two issues:

e The Application Assembler and Deployer should be able to customize the be-
havior of an application’s business logic without accessing the application’s
source code. Typically thiswill involve specification of parameter values, con-
nection to external resources, and so on. Deployment descriptors provide this
capability

» Applications must be ableto access resources and external information in their
operational environment without knowledge of how the external information
is named and organized in that environment. The INDI naming context and

61

62

Javalanguage annotations provide this capability.

EE5.11 Chapter Organization

The following sections contain the Java EE platform solutions to the above issues.

* Section EE.5.2, “JNDI Naming Context” defines general rulesfor the use of
the INDI naming context and its interaction with Java language annotations
that reference entries in the naming context.

» Section EE.5.3, “Responsihilities by Java EE Role” defines the general re-
sponsibilities for each of the Java EE roles such as Application Component
Provider, Application Assembler, Deployer, and Java EE Product Provider.

» Section EE.5.4, “Simple Environment Entries’ defines the basic interfaces
that specify and access the application component’s naming environment. The
section illustrates the use of the application component’s naming environment
for generic customization of the application component’s business logic.

» Section EE.5.5, “Enterprise JavaBeans™ (EJB) References’ defines the inter-
faces for obtaining the home interface or an instance of an enterprise bean us-
ing an EJB reference. An EJB reference is a special entry in the application
component’s environment.

» Section EE.5.6, “Web Service References’ refers to the specification for web
service references.

» Section EE.5.7, “Resource Manager Connection Factory References’ defines
the interfaces for obtaining a resource manager connection factory using are-
source manager connection factory reference. A resource manager connection
factory reference is a special entry in the application component’s environ-
ment.

 Section EE.5.8, “Resource Environment References’ defines the interfaces
for obtaining an administered object that is associated with a resource using a
resource environment reference. A resource environment reference is a spe-
cia entry in the application component’s environment.

» Section EE.5.9, “Message Destination References’ defines the interfaces for
declaring and using message destination references.

* Section EE.5.10, “UserTransaction References’ describes the use by eligible
application components of referencesto aUserTransaction object in the
component’s environment to start, commit, and abort transactions.

Final Release

INDINAMINGCONTEXT 63

 Section EE.5.11, “ TransactionSynchroni zationRegistry References’ describes
the use by eligible application components of referencesto a
TransactionSynchronizationRegistry object in the component’s environ-
ment.

e Section EE.5.12, “ORB References’ describes the use by eligible application
components of references to a CORBA 0RB object in the component’s envi-
ronment.

* Section EE.5.13, “Persistence Unit References’ describes the use by eligible
application components of referencesto an EntityManagerFactory object in
the component’s environment.

 Section EE.5.14, “ Persistence Context References’ describes the use by digi-
ble application components of references to an EntityManager object in the
component’ s environment.

EE.5.1.2 Required Accessto the INDI Naming Environment

Java EE application clients, enterprise beans, and web components are required to
have access to a INDI naming environment. The containers for these application
component types are required to provide the naming environment support described
here.

Annotations and deployment descriptors are the main vehicles for conveying
access information to the Application Assembler and Deployer about application
components' requirements for customization of business logic and access to
external information. The annotations described here are available for use by all
application component types. The deployment descriptor entries described here
are present in identical form in the deployment descriptor schemas for each of
these application component types. See the corresponding specification of each
application component type for the details.

EE.5.2 JNDI Naming Context

The application component’s naming environment is amechanism that allows
customization of the application component’s business logic during deployment or
assembly. Use of the application component’s environment allows the application
component to be customized without the need to access or change the application
component’s source code.

EE.5.2.1 The Application Component’s Environment

The container implements the application component’s environment, and providesit
to the application component instance as a JINDI naming context. The application
component’s environment is used as follows:

1. The application component’ s business methods make use of entries from the
environment. The business methods may access the environment using the
JNDI interfaces or |ookup methods on component-specific context objects. Al-
s0, entries from the environment may be injected into the application compo-
nent’ sfields or methods. The Application Component Provider declaresin the
deployment descriptor, or viaannotations, all the environment entries that the
application component expects to be provided in its environment at runtime.
For each environment entry, the Application Component Provider can also
specify in the deployment descriptor, or viaannotations, the INDI name of an-
other environment entry whose value should be used to initialize the environ-
ment entry being defined (“lookup” functionality).

2. The container provides an implementation of the INDI naming context that
storesthe application component environment. The container also providesthe
toolsthat allow the Deployer to create and manage the environment of each ap-
plication component.

3. The Deployer usesthe tools provided by the container to initialize the environ-
ment entries that are declared in the application component’ s deployment de-
scriptor or viaannotations. The Deployer can set and modify the values of the
environment entries. As part of this process, the Deployer is alowed to over-
ride any “lookup” information associated with the application component.

4. The container injects entriesfrom the environment into appli cation component
fields or methods as specified by the application component’ s deployment de-
scriptor or by annotations on the application component class.

5. The container also makes the environment naming context available to the ap-
plication component instances at runtime. The application component’ s in-
stances may use the JNDI interfaces or component context |ookup methods to
obtain the values of the environment entries.

Final Release

JINDINAMINGCONTEXT

EE.5.2.2 Application Component Environment Namespaces

The application component’s naming environment is composed of four logical
namespaces, representing naming environments with different scopes. The four
namespaces are:

* java:comp - Namesin this namespace are per-component (for example, per en-
terprise bean). Except for componentsin aweb module, each component gets
itsown java: comp namespace, not shared with any other component. Compo-
nents in aweb module do not have their own private component namespace.
See note below.

* java:module - Namesin this namespace are shared by all componentsin a
module (for example, al enterprise beansin asingle EJB module, or al com-
ponents in aweb module).

* java:app - Namesin this namespace are shared by al componentsin all mod-
ulesin asingle application, where “single application” means asingle deploy-
ment unit, such as asingle ear file, a single module deployed standal one, etc.
For example, awar fileand an EJB jar file in the same ear file would both have
access to resources in the java: app namespace.

* java:global - Namesin this namespace are shared by all applications de-
ployed in an application server instance. Note that an application server in-
stance may represent a single server, acluster of servers, an administrative
domain containing many servers, or even more. The scope of an application
server instanceis product-dependent, but it must be possibleto deploy multiple
applications to a single application server instance.

For historical reasons, the java: comp namespace is shared by all components
in aweb module. To preserve compatibility, this specification doesn’t change
that. Inaweb module, java: comp refers to the same namespace as java:moduTe.
It is recommended that resources in aweb module that are intended to be shared
by more than one component be declared in the java:module/env namespace.

Note that an application client is a module with only a single component.

Note also that resource adapter (connector) modules may not define resources
in any of the component namespaces, but may ook up resources defined by other
components. All the java: namespaces accessible in aresource adapter are the

65

66

namespaces of the component that called the resource adapter (when called in the
context of a component).

If multiple application components declare an environment entry in one of the
shared namespaces, all attributes of that entry must be identical in each
declaration. For example, if multiple components declare a resource reference
with the same java:app name, the authentication and shareable attributes must
beidentical.

If al attributes of each declaration of a shared environment entry are not
identical, this must be reported as a deployment error to the Deployer. The
deployment tool may allow the Deployer to correct the error and continue
deployment.

By default, environment entries declared by application components are
created in the java: comp/env Nnamespace. Environment entries may be declared
in any one of the defined namespaces by explicitly including the namespace prefix
before the name. It isrecommended but not required that environment entries be
created in the env subcontext of the corresponding naming context. For example,
entries shared within amodule should be declared in the java:module/env
context. Note that names that are not under the env subcontext may conflict with
the current or future versions of this specification, with server-defined names,
such as the names of applications or modules, or with server-defined resources.
Names in the env subcontexts of any of the namespaces must only be created by
an explicit declaration in an application or by an explicit action by an
administrator; the application server must not predefine any namesin the env
subcontext of any of the namespaces, or in any subcontext of any such env
context.

A Java EE product may impose security restrictions on access of resourcesin
the shared namespaces. However, it must be possible to deploy applications that
define resources in the shared namespaces that are usable by different entities at
the given scope. For example, it must be possible to deploy an application that
defines aresource, using various forms of metadata declaration, in the
java:global namespace that is usable by a separate application.

EE.5.2.3 Accessibility of Environment Entry Types

All objects defined in environment entries of any kind (either in deployment
descriptors or through annotations) must be specified to be of a Javatypethatis
accessible to the component. Accessibility of Java classesis specified in section
Section EE.8.3, “ Class Loading Requirements.” If the object is of type

Final Release

JINDINAMINGCONTEXT

java.lang.Class, the Class object must refer to aclassthat is accessible to the
component. Note that in cases where the container may return an implementation
subtype of the requested type, the implementation subtype might not be accessible
to the component.

EE.5.24 Sharing of Environment Entries

Each application component definesits own set of dependencies that must appear as
entriesin the application component’s environment. All instances of an application
component within the same container share the same environment entries.
Application component instances are not allowed to modify the environment at
runtime.

In general, lookups of objectsinthe INDI java: namespace are required to
return a new instance of the requested object every time. Exceptions are allowed
for the following:

» The container knows the object isimmutable (for example, objects of type
java.lang.String), or knowsthat the application can’t change the state of the
object.

» The object is defined to be a singleton, such that only one instance of the ob-
ject may exist inthe VM.

» The name used for the lookup is defined to return an instance of the object that
might be shared. The name java: comp/ORB iS such a name.

In these cases, a shared instance of the object may be returned. In all other
cases, a hew instance of the requested object must be returned on each lookup.
Note that, in the case of resource adapter connection objects, it is the resource
adapter’'sManagedConnectionFactory implementation that is responsible for
satisfying this requirement.

Each injection of an object corresponds to a JNDI lookup. Whether a new
instance of the requested object isinjected, or whether ashared instanceis
injected, is determined by the rules described above.

EE.5.2.5 Annotations and Injection

As described in the following sections, afield or method of certain container-
managed component classes may be annotated to request that an entry from the
application component’s environment be injected into the class. The specifications

67

68

for the different containersindicate which classes are considered contai ner-managed
classes; not al classes of a given type are necessarily managed by the container.

Any of the types of resources described in this chapter may be injected.
Injection may also be requested using entries in the deployment descriptor
corresponding to each of these resource types. The field or method may have any
access qualifier (public, private, etc.). For al classes except application client
main classes, the fields or methods must not be static. Because application
clients use the same lifecycle as Java SE applications, no instance of the
application client main classis created by the application client container. Instead,
the static main method is invoked. To support injection for the application client
main class, the fields or methods annotated for injection must be static.

A field of a class may be the target of injection. The field may not be final.
By default, the name of the field is combined with the fully qualified name of the
class and used directly as the name in the application component’s naming
context. For example, afield named myDatabase in the class MyApp in the package
com. example would correspond to the INDI name java: comp/env/
com.example.MyApp/myDatabase. The annotation also allowsthe INDI nameto be
specified explicitly. When a deployment descriptor entry is used to specify
injection, the INDI name and the field name are both specified explicitly. Note
that, by default, the INDI name is relative to the java: comp/env naming context.

Environment entries may also be injected into a class through methods that
follow the naming conventions for JavaBeans properties. The annotation is
applied to the set method for the property, which is the method that’s called to
inject the environment entry into the class. The JavaBeans property name (not the
method name) is used as the default INDI name. For example, a method named
setMyDatabase in the sameMyApp class would correspond to the same JNDI name
java:comp/env/com.example.MyApp/myDatabase asthefield myDatabase.

Each resource may only be injected into asingle field or method of a given
name in a given class. Requesting injection of the java: comp/env/
com.example.MyApp/myDatabase resource into both the setMyDatabase method
and the myDatabase field is an error. Note, however, that either the field or the
method could request injection of aresource of adifferent (non-default) name. By
explicitly specifying the INDI name of aresource, a single resource may be
injected into multiple fields or methods of multiple classes.

The specifications for the various application component types describe
which classes may be annotated for injection, as summarized in Table EE.5-1.
They also describe when injection occurs in the lifecycle of the component.
Typically injection will occur after an instance of the class is constructed, but

Final Release

JINDINAMINGCONTEXT

before any business methods are called. If the container fails to find a resource
needed for injection, initialization of the class must fail, and the class must not be
put into service.

TableEE.5-1 Component classes supporting injection

Classes supporting Supports Supports
Spec injection PostConstruct? PreDestroy?
Servlet servlets Yes Yes
servlet filters Yes Yes
event listeners Yes Yes
JSP tag handlers Yes Yes
tag library event listeners Yes Yes
JSF scoped managed beans Yes Yes
JAX-WS service endpoints Yes Yes
handlers Yes Yes
EJB beans Yes Yes
interceptors Yes Yes
Managed managed beans Yes Yes
Beans
CDI CDlI-style managed beans® Yes Yes
decorators
Java EE main class (static) Yes No
platform login callback handler Yes Yes
a We use this term to refer to classes that become managed beans per the rules

in the CDI specification (JSR-299), thus excluding managed beans declared using the
@ManagedBean annotation as well as EJB session beans, both of which would be
managed beans even in the absence of CDI.

Annotations may also be applied to the classitself. These annotations declare
an entry in the application component’s environment but do not cause the resource
to be injected. Instead, the application component is expected to use JINDI or a
component context lookup method to lookup the entry. When the annotation is
applied to the class, the INDI name and the environment entry type must be
specified explicitly.

Resource annotations may appear on any of the classeslisted above, or on any
superclass of any class listed above. A resource annotation on any classin the

69

70

inheritance hierarchy defines a resource needed by the application component.
However, injection of resources follows the Java language overriding rules for
visibility of fields and methods. A method definition that overrides a method on a
superclass defines the resource, if any, to be injected into that method. An
overriding method may request injection even though the superclass method does
not request injection, it may request injection of a different resourcethanis
requested by the superclass, or it may request no injection even though the
superclass method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed
to overridden) by a subclass may still request injection. This allows, for example,
aprivate field to be the target of injection and that field to be used in the
implementation of the superclass, even though the subclass has no visibility into
that field and doesn’t know that the implementation of the superclassisusing an
injected resource. Note a declaration of afield in a subclass with the same name as
afield in a superclass always causes the field in the superclass to be hidden.

In some cases a class may need to perform initialization of its own after all
resources have been injected. To support this case, one method of the class may be
annotated with the PostConstruct annotation (or, equivalently, specified using
the post-construct entry of adeployment descriptor). This method will be called
after all injections have occured and before the class is put into service. This
method will be called even if the class doesn’t request any resources to be
injected. Similarly, for classes whose lifecycle is managed by the container, the
PreDestroy annotation (or, equivalently, the pre-destroy entry of a deployment
descriptor) may be applied to one method that will be called when the classis
taken out of service and will no longer be used by the container. Each classin a
class hierarchy may have PostConstruct and PreDestroy methods. The order in
which the methods are called matches the order of the class hierarchy with
methods on a superclass being called before methods on a subclass.

ThePostConstruct and PreDestroy annotations are specified by the Common
Annotations specification. All classes that support injection also support the
PostConstruct annotation. All classes for which the container manages the fulll
lifecycle of the object also support the PreDestroy annotation.

Please note that CDI support must be enabled selectively at the module level,
or more precisely at the archive level (see Section 12.1 of the CDI specification).
Only archives for which CDI is enabled, e.g. by including aMETA-INF/beans.xm]
descriptor, are bean archives. It follows that CDI-style managed beans or
decorators can only exist as such when they are part of abean archive. Thus, itis
only within abean archive that support for resource injection for those component

Final Release

JINDINAMINGCONTEXT

types can be contemplated. Thisis markedly different from support for managed
beans that use the @ManagedBean annotation. Such beans are unconditionally
required to be supported in al types of modules, and so is resource injection on
them.

EE.5.2.6 Annotations and Deployment Descriptors

Environment entries may be declared by use of annotations, without need for any
deployment descriptor entries. Environment entries may a so be declared by
deployment descriptor entries. The same environment entry may be declared using
both an annotation and a deployment descriptor entry. In this case, the information
in the deployment descriptor entry may be used to override some of the information
provided in the annotation. This approach may be used by an Application
Assembler or Deployer to override information provided by the Application
Component Developer. Applications should not use deployment descriptor entries
to request injection of aresource into afield or method that has not been designed
for injection.

The following list describes the rules for how a deployment descriptor entry
may override aResource annotation.

» The relevant deployment descriptor entry islocated based on the INDI name
used with the annotation (either defaulted or provided explicitly).

» Thetype specified in the deployment descriptor must be assignable to the type
of thefield or property.

e Thedescription, if specified, overrides the description element of the annota-
tion.

» Theinjection target, if specified, must name exactly the annotated field or
property method.

* The res-sharing-scope element, if specified, overridesthe shareable €le-
ment of the annotation. In general, the Application Assembler or Deployer
should not change this value as doing so is likely to break the application.

* The res-auth element, if specified, overridesthe authenticationType ele-
ment of the annotation. In general, the Application Assembler or Deployer
should not change this value as doing so is likely to break the application.

* Thelookup-name element, if specified, overridesthe T1ookup €element of the an-
notation.

71

72

Therules for how a deployment descriptor entry may override an EJB
annotation are included in the EJB specification. The rules for how a deployment
descriptor entry may override awebServiceRef annotation are included in the
Web Services for Java EE specification.

A PostConstruct method may be specified using either the PostConstruct
annotation on the method or the post-construct deployment descriptor entry.
Similarly, a PreDestroy method may be specified using either the PreDestroy
annotation on the method or the pre-destroy deployment descriptor entry.

EE.5.2.7 Other Naming Context Entries

In addition to environment entries declared by application components, other items
will appear in the naming context, as specified by this and other specifications.
Following are some of these entries. Thisis not an exhaustive list; consult the
corresponding specification for details.

« All enterprise beansin an application are given entriesin the shared namespac-
es. Seethe EJB specification for details.

 All web applications are given names in the shared namespaces. The names
correspond to the complete URL of the web application. See the Servlet spec
for details.

 Objects representing several container services are defined in the java: comp
namespace. See Section EE.5.10, “UserTransaction References,”
Section EE.5.11, “ TransactionSynchronizationRegistry References,” and
Section EE.5.12, “ORB References.”

» Strings providing the current module name and application name are defined
in the java: comp hamespace. See Section EE.5.15, “Application Name and
Module Name References.”

EE.5.3 Responsibilitiesby Java EE Role

This section describes the responsibilities for each Java EE role that apply to al uses
of the Java EE naming context. The sections that follow describe the responsibilities
that are specific to the different types of objects that may be stored in the naming
context.

Final Release

RESPONSIBILITIESBY JAVA EEROLE

EE.5.3.1 Application Component Provider’s Responsibilities

The Application Component Provider may make use of three techniques for
accessing and managing the naming context. First, the Application Component
Provider may use Javalanguage annotations to request injection of aresource from
the naming context, or to declare elements that are needed in the naming context.
Second, the component may use the INDI APIs to access entriesin the naming
context. Third, deployment descriptor entries may be used to declare entries needed
in the naming context, and to request injection of these entries into application
components. Deployment descriptor entries may also be used to override
information provided by annotations.

As part of the declaration of elementsin the naming context, the Application
Component Provider can specify the INDI name of aresource to belooked up inthe
naming context to initialize the element being declared. The JINDI name in question
may belong to any of the namespaces that compose the application component
environment.

To ensure that it has access to the correct javax.naming.InitialContext
implementation provided by the container, a portable application component must
not specify the java.naming. factory.initial property, must not specify a
URLContextFactory for the ”java” scheme-id, and must not call the
javax.naming.spi.NamingManager.setInitialContextFactoryBuilder method.

EE.53.2 Application Assembler’s Responsibilities

The Application Assembler is allowed to modify the entries in the naming context

set by the Application Component Provider, and is allowed to set the values of those
entries for which the Application Component Provider has not specified any values.
The Application Assembler may use the deployment descriptor to override settings
made by the Application Component Provider in the source code using annotations.

EE.5.3.3 Deployer’s Responsibilities

The Deployer must ensure that all the entries declared by an application component
are created and properly initialized.

The Deployer can modify the entries that have been previously set by the
Application Component Provider and/or Application Assembler, and must set the
values of those entries for which arequired value has not been specified. If an

73

74

entry includes the Tookup-name element, the Deployer should bind it to the entry
specified as the target of the lookup.

The description deployment descriptor elements and annotation elements

provided by the Application Component Provider or Application Assembler help
the Deployer with this task.

EE.5.34 Java EE Product Provider’s Responsibilities
The Java EE Product Provider has the following responsibilities:

* Provide adeployment tool that allows the Deployer to set and modify the en-

tries of the application component’ s naming context.

Implement the java:comp, java:module, java:app and java:global envi-
ronment naming contexts, and provide them to the application component in-
stances at runtime. The naming context must include all the entries declared
by the Application Component Provider, with their values supplied in the de-
ployment descriptor or set by the Deployer. The environment naming context
must allow the Deployer to create subcontexts if they are needed by an appli-
cation component. Certain entries in the naming context may have to beini-
tialized with the values of other entries, specifically when the “lookup”
facility isused. Inthiscase, it isan error if there are any circular dependencies
between entries. Similarly, it isan error if looking up the specified INDI name
resultsin aresource whose type is not compatible with the entry being creat-
ed. The deployment tool may allow the deployer to correct either of these
classes of errors and continue the deployment.

Ensure that, in the absence of any properties specified by the application, the
javax.naming.InitialContext implementation meets the requirements de-
scribed in this specification.

Inject entries from the naming environment into the application component,
as specified by the deployment descriptor or annotations on the application
component classes.

The container must ensure that the application component instances have only
read access to their naming context. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the
javax.naming.Context interface that modify the environment naming context
and its subcontexts.

Final Release

SIMPLEENVIRONMENT ENTRIES

EE.54 Simple Environment Entries

A smple environment entry is a configuration parameter used to customize an
application component’s business logic. The environment entry values may be one
of the following Javatypes: String, Character, Byte, Short, Integer, Long,
Boolean, Double, Float, Class, and any subclass of Enum.

The following subsections describe the responsibilities of each Java EE Role.

EE54.1 Application Component Provider’'s Responsibilities

This section describes the Application Component Provider’s view of the
application component’s environment, and defines his or her responsibilities. It does
so in three sections, the first describing annotations for injecting environment
entries, the second describing the API for accessing environment entries, and the
third describing syntax for declaring the environment entries in a deployment
descriptor.

EE54.1.1 Injection of Simple Environment Entries

A fidd or amethod of an application component may be annotated with the
Resource annotation. The name and type of the environment entry are as described
above. Note that the container will unbox the environment entry as required to
match it to a primitive type used for the injection field or method. The
authenticationType and shareable elements of the Resource annotation must not
be specified; simple environment entries are not shareable and do not require
authentication.

The following code example illustrates how an application component uses
annotations to declare environment entries.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions;
// The minimum number of tax exemptions, configured by the Deployer.
@Resource int minExemptions;

public void setTaxInfo(int numberOfExemptions,...)
throws InvalidNumberOfExemptionsException {

// Use the environment entries to
// customize business Togic.
if (numberOfExemptions > maxExemptions ||

75

76

numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

The following code example illustrates how an environment entry can be
assigned avalue by referring to another entry, potentialy in adifferent
namespace.

// an entry that gets 1its value from an application-wide entry
@Resource(lookup="java:app/env/timeout”) 1int timeout;

EE.54.1.2 Programming I nterfaces for Accessing Simple Environment
Entries

In addition to the injection based approach described above, an application
component may access environment entries dynamically. An application
component instance locates the environment naming context using the JINDI
interfaces. Aninstance createsajavax.naming. InitialContext Object by usingthe
constructor with no arguments, and looks up the naming environment viathe
InitialContext under the name java: comp/env. The application component’s
environment entries are stored directly in the environment naming context, or in its
direct or indirect subcontexts.

Environment entries have the Java programming language type declared by
the Application Component Provider in the deployment descriptor.

The following code example illustrates how an application component
accesses its environment entries.

pubTlic void setTaxInfo(int numberOfExemptions,...)
throws InvalidNumberOfExemptionsException {

// Obtain the application component’s

// environment naming context.

Context initCtx = new InitialContext();

Context myEnv = (Context)initCtx.lookup(“java:comp/env”);

// Obtain the maximum number of tax exemptions
// configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

Final Release

SIMPLEENVIRONMENT ENTRIES

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to
// customize business logic.
if (numberOfExemptions > max.intValue() ||
numberOfExemptions < min.intValue())
throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.

String vall = (String)myEnv.lookup(“foo/namel”);
Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The application component can also

// lookup using full pathnames.

Integer val3 = (Integer)initCtx.lookup(“java:comp/env/name3”);

Integer val4
(Integer)initCtx.lookup(“java:comp/env/foo/name4”);

EE.54.13 Declaration of Simple Environment Entries

The Application Component Provider must declare al the environment entries
accessed from the application component’s code. The environment entries are
declared using either annotations on the application component’s code, or using the
env-entry eementsin the deployment descriptor. Each env-entry element
describes a single environment entry. The env-entry element consists of an
optional description of the environment entry, the environment entry name, which
by default isrelative to the java: comp/env context, the expected Java programming
language type of the environment entry value (the type of the object returned from
the INDI 1ookup method), and an optiona environment entry value.

An environment entry is scoped to the application component whose
declaration contains the env-entry element. This means that the environment
entry is not accessible from other application components at runtime, and that
other application components may define env-entry elements with the same env-
entry-name Without causing a name conflict.

7

78

If the Application Component Provider provides a value for an environment
entry using the env-entry-value element, the value can be changed later by the
Application Assembler or Deployer. The value must be a string that is valid for
the constructor of the specified type that takes asingle string parameter, or in the
case of Character, asingle character.

The following example is the declaration of environment entries used by the
application component whose code was illustrated in the previous subsection.

<env-entry>
<description>
The maximum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
</env-entry>
<env-entry>
<description>
The minimum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>l</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/namel</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>valuel</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>
</env-entry>
<env-entry>
<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
</env-entry>

Fina Release

SIMPLEENVIRONMENT ENTRIES

<env-entry>
<env-entry-name>foo/named4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>helperClass</env-entry-name>
<env-entry-type>java.lang.Class</env-entry-type>
<env-entry-value>com.acme.helper.Helper</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>timeUnit</env-entry-name>
<env-entry-type>java.util.concurrent.TimeUnit</env-entry-type>
<env-entry-value>NANOSECONDS</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>bar</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<lookup-name>java:app/env/appBar</Tookup-name>
</env-entry>

Injection of environment entries may also be specified using the deployment

descriptor, without need for Java language annotations. The following exampleis
the declaration of environment entries corresponding to the earlier injection
example.

<env-entry>
<description>
The maximum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>
com.example.Payroll1Service/maxExemptions
</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
<injection-target>
<injection-target-class>
com.example.PayrollService

79

80

</injection-target-class>
<injection-target-name>
maxExemptions
</injection-target-name>
</injection-target>
</env-entry>
<env-entry>
<description>
The minimum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>
com.example.Payroll1Service/minExemptions
</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>l</env-entry-value>
<injection-target>
<injection-target-class>
com.example.Payroll1Service
</injection-target-class>
<injection-target-name>
minExemptions
</injection-target-name>
</injection-target>
</env-entry>

It's often convenient to declare afield or method as an injection target, but
specify adefault value in the code, asillustrated in the following example.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions = 4; // defaults to 4

To support this case, the container must only inject avalue for this resource if
the deployer has specified a value to override the default value. The env-entry-
value element in the deployment descriptor is optional when an injection target is
specified. If the element is not specified, no value will be injected. In addition, if
the element is not specified, the named resource is not initialized in the naming
context; explicit lookups of the named resource will fail.

Fina Release

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

The deployment descriptor equivalent of the Tookup €lement of the
@Resource annotation is Tookup-name. The following deployment descriptor
fragment is equivalent to the earlier example that used Tookup.

<env-entry>
<env-entry-name>somePackage.SomeClass/timeout</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<injection-target>
<injection-target-class>somePackage.SomeClass</injection-
target-class>
<injection-target-name>timeout</injection-target-name>
</injection-target>
<lookup-name>java:app/env/timeout</lookup-name>
</env-entry>

Itisan error for both the env-entry-value and lookup-name €ementsto be
specified for agiven env-entry element. If either element exists, an eventual
Tookup €lement of the corresponding @Resource annotation (if any) must be
ignored. In other words, assignment of avalue to an environment entry viaa
deployment descriptor, either directly (env-entry-value) or indirectly (1ookup-
name), overrides any assignments made via annotations.

EE.55 Enterprise JavaBeans™ (EJB) References

This section describes the programming and deployment descriptor interfaces that
alow the Application Component Provider to refer to the homes of enterprise beans
or to enterprise bean instances using “logical” hames called EJB references. The
EJB references are special entriesin the application component’s naming
environment. The Deployer bindsthe EJB referencesto the enterprise bean’s homes
or instancesin the target operational environment.

The deployment descriptor also allows the Application Assembler to link an
EJB reference declared in one application component to an enterprise bean
contained in an gjb-jar file in the same Java EE application. Thelink isan
instruction to the tools used by the Deployer describing the binding of the EJB
reference to the home of the specified target enterprise bean. The same linking can
also be specified by the Application Component Provider using annotationsin the
source code of the component.

The requirements in this section only apply to Java EE products that include
an EJB container.

81

82

EE.5.5.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to EJB references. It does so in three sections, thefirst
describing annotations for injecting EJB references, the second describing the API
for accessing EJB references, and the third describing the syntax for declaring the
EJB references in adeployment descriptor

EE.5511 Injection of EJB Entries

A field or amethod of an application component may be annotated with the EJB
annotation. The EJB annotation represents a reference to an EJB session bean. The
reference may be to the local or remote home interface of the session bean, or may
be to the businessinterface of an EJB 3 bean. If thereferenceisto the EJB 3
business interface, areference to an instance of the enterprise bean will be injected.

The following example illustrates how an application component uses the
EJB annotation to reference an instance of an enterprise bean. The referenced
bean is a stateful session bean. The enterprise bean reference will have the name
java:comp/env/com.example.MyApp/myCart in the naming context. The target of
the reference is not named and must be resolved by the Deployer.

@EJB private ShoppingCart myCart;

The following example illustrates use of amost all elements of the EJB
annotation.

@EJB(

name = “ejb/shopping-cart”,

beanName = “cartl”,

beanInterface = ShoppingCart.class,

description = “The shopping cart for this application”
)

private Cart myCart;

Asan dternative to beanName, areference to an EJB can use the global INDI
name for that EJB, or any of the other names mandated by the EJB specifications,
by means of the lookup annotation element. The following example uses a INDI
name in the application namespace.

@EJB(
Tookup="java:app/cartModule/ShoppingCart”,

Final Release

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

description = “The shopping cart for this application”
)
private Cart myOtherCart;

EE.55.1.2 Programming I nterfacesfor EJB References

The Application Component Provider may use EJB references to locate the home
interfaces or instances of enterprise beans as follows.

« Assign an entry in the application component’ s environment to the reference.
(See subsection 5.5.1.3 for information on how EJB references are declared in
the deployment descriptor.)

* This specification recommends, but does not require, that references to enter-
prise beans be organized in the ejb subcontext of the application component’s
environment (that is, inthe java:comp/env/ejb JNDI context). Note that en-
terprise bean references declared via annotations will not, by default, bein
any subcontext.

L ook up the homeinterface or instance of the referenced enterprise bean in the
application component’s environment using JNDI.

The following exampleillustrates how an application component uses an EJB
reference to locate the home interface of an enterprise bean.

public void changePhoneNumber(...) {

// Obtain the default initial INDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup('java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

83

In the example, the Application Component Provider assigned the
environment entry ejb/Emp1Record as the EJB reference name to refer to the
home of an enterprise bean.

EE.55.1.3 Declaration of EJB References

Although the EJB referenceis an entry in the application component’s environment,
the Application Component Provider must not use aenv-entry element to declare
it. Instead, the Application Component Provider must declare all the EJB references
using either annotations on the application component’s code or the ejb-ref or
ejb-local-ref edementsof the deployment descriptor. This alows the consumer of
the application component’s JAR file (the Application Assembler or Deployer) to
discover all the EJB references used by the application component. Deployment
descriptor entries may also be used to specify injection of an EJB reference into an
application component.

Each ejb-ref oOr ejb-Tocal-ref element describes the interface requirements
that the referencing application component has for the referenced enterprise bean.
The ejb-ref element contains a description element and the ejb-ref-name,
ejb-ref-type, home, and remote €lements.

The ejb-ref-name element specifies the EJB reference name. Its value is the
environment entry name used in the application component code. The ejb-ref-
type €element specifies the expected type of the enterprise bean. Its value must be
either Entity Or Session. The home and remote €lements specify the expected Java
programming language types of the referenced enterprise bean’s home and remote
interfaces.

An EJB reference is scoped to the application component whose declaration
containsthe ejb-ref or ejb-Tocal-ref element. This means that the EJB
reference is not accessible from other application components at runtime, and that
other application components may define ejb-ref or ejb-local-ref elements
with the same ejb-ref-name without causing a name conflict.

The Tookup-name €lement specifies the INDI name of an environment entry
that provides a value for the reference.

The following example illustrates the declaration of EJB referencesin the
deployment descriptor.

<ejb-ref>
<description>
This is a reference to the entity bean that

Final Release

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

encapsulates access to employee records.
</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrolTHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>
<lookup-name>java:global/personnel/retirement/PensionPlan</

Tookup-name>

</ejb-ref>

EE.552 Application Assembler’s Responsibilities

The Application Assembler can use the ejb-11ink element in the deployment
descriptor to link an EJB reference to a target enterprise bean.
The Application Assembler specifies the link to an enterprise bean as follows:

» TheApplication Assembler usestheoptional ejb-11ink element of theejb-ref
or ejb-Tocal-ref element of the referencing application component. The val-
ue of the ejb-11ink element is the name of the target enterprise bean. (It isthe
name defined inthe ejb-name €lement of thetarget enterprise bean.) Thetarget
enterprise bean can bein any gjb-jar filein the same Java EE application asthe
referencing application component.

« Alternatively, to avoid the need to rename enterprise beans to have unique

names within an entire Java EE application, the Application Assembler may
use the following syntax in the ejb-1ink element of the referencing applica-

tion component. The Application Assembler specifies the path name of the
gjb-jar file containing the referenced enterprise bean and appends the ejb-
name Of the target bean separated from the path name by “#”. The path nameis
relative to the referencing application component JAR file. In this manner,
multiple beans with the same ejb-name may be uniquely identified when the
Application Assembler cannot change gjb-names.

* Alternatively to the use of ejb-11ink, the Application Assembler may use the
lookup-name €lement to reference the target EJB component by means of one
of its INDI names. Itisan error for both ejb-1ink and Tookup-name to appear
inside an ejb-ref element.

» The Application Assembler must ensure that the target enterprise bean istype-
compatible with the declared EJB reference. This means that the target enter-
prise bean must be of thetypeindicated inthe ejb-ref-type element, and that
the home and remote interfaces of the target enterprise bean must be Javatype-
compatible with the interfaces declared in the EJB reference.

The following example illustrates the use of the ejb-1ink element in the
deployment descriptor. The enterprise bean reference should be satisfied by the
bean named EmployeeRecord. The EmployeeRecord enterprise bean may be
packaged in the same module as the component making this reference, or it may
be packaged in another module within the same Java EE application as the
component making this reference.

<ejb-ref>
<description>
This is a reference to the entity bean that
encapsulates access to employee records. It
has been Tinked to the entity bean named
EmployeeRecord in this application.
</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-Tink>EmpTloyeeRecord</ejb-Tink>
</ejb-ref>

Final Release

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

The following example illustrates using the ejb-1ink element to indicate an
enterprise bean reference to the ProductEJB enterprise bean that isin the same
Java EE application unit but in a different gjb-jar file.

<ejb-ref>
<description>
This is a reference to the entity bean that
encapsulates access to a product. It
has been 1linked to the entity bean named
ProductEJB 1in the product.jar file 1in this
application.
</description>
<ejb-ref-name>ejb/Product</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.acme.products.ProductHome</home>
<remote>com.acme.products.Product</remote>
<ejb-Tink>../products/product.jar#ProductE]JB</ejb-11ink>
</ejb-ref>

The following example illustrates using the ejb-1ink element to indicate an
enterprise bean reference to the ShoppingCart enterprise bean that isin the same
Java EE application unit but in adifferent gb-jar file. The reference was
originally declared in the application component’s code using an annotation. The
Assembler provides only the link to the bean.

<ejb-ref>
<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
<ejb-Tink>../products/product.jar#ShoppingCart</ejb-1ink>
</ejb-ref>

The same effect can be obtained by using the Tookup-name element instead,
using an appropriate INDI name for the target bean.

<ejb-ref>
<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
<lookup-name>java:app/products/ShoppingCart</Tookup-name>
</ejb-ref>

87

88

EE.55.3 Deployer’s Responsibilities
The Deployer isresponsible for the following:

» The Deployer must ensurethat all the declared EJB references are bound to the

homes or instances of enterprise beans that exist in the operational environ-
ment. The Deployer may use, for example, the INDI LinkRef mechanism to
create a symbolic link to the actual INDI name of the target enterprise bean.

The Deployer must ensure that the target enterprise bean is type-compatible
with the types declared for the EJB reference. This meansthat the target enter-
prise bean must be of the type indicated in the ejb-ref-type element or spec-
ified viathe EJB annotation, and that the home and remote interfaces of the
target enterprise bean must be Java type-compatible with the home and re-
mote interfaces declared in the EJB reference (if specified).

If an EJB reference declaration includes the ejb-1ink element, the Deployer
should bind the enterprise bean reference to the enterprise bean specified asthe
link’ s target. If an EJB reference declaration includes the Tookup-name €le-
ment, the Deployer should bind the enterprise bean reference to the enterprise
bean specified as the target of the lookup. It isan error for an EJB reference
declaration to include both an ejb-T1ink and alookup-name €lement.

EE.55.4 Java EE Product Provider’s Responsibilities

The Java EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the Java EE Product Provider must be able to process the
information supplied in classfile annotations and in the ejb-ref elementsin the
deployment descriptor.

At the minimum, the tools must be able to:

 Preserve the application assembly information in annotations or in the ejb-

1ink elements by binding an EJB reference to the home interface or instance
of the specified target enterprise bean.

* Inform the Deployer of any unresolved EJB references, and allow him or her

to resolve an EJB reference by binding it to a specified compatible target en-

Final Release

WEB SERVICEREFERENCES

terprise bean.

EE.5.6 Web Service References

A web service reference is similar to an Enterprise JavaBeans reference, but is used
to reference aweb service. Web service references are fully specified in the Web
Service specification and the JAX-WS specification.

EE.5.7 Resour ce Manager Connection Factory References

A resource manager connection factory is an object that is used to create
connections to a resource manager. For example, an object that implements the
javax.sql.DataSource interfaceis aresource manager connection factory for
java.sql.Connection objectsthat implement connections to a database
management system.

This section describes the application component programming and
deployment descriptor interfaces that allow the application component code to
refer to resource factories using logical names called resource manager
connection factory references. The resource manager connection factory
references are special entries in the application component’s environment. The
Deployer binds the resource manager connection factory references to the actual
resource manager connection factories that exist in the target operational
environment. Because these resource manager connection factories alow the
Container to affect resource management, the connections acquired through the
resource manager connection factory references are called managed resources (for
example, these resource manager connection factories allow the Container to
implement connection pooling and automatic enlistment of the connection with a
transaction).

Resource manager connection factory objects accessed through the naming
environment are only valid within the component instance that performed the
lookup. See the individual component specifications for additional restrictions

that may apply.

EES5.7.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating
resource factories and defines his or her responsibilities. It does so in three sections,

89

90

the first describing the annotations used to inject resource manager connection
factory references, the second describing the API for accessing resource manager
connection factory references, and the third describing the syntax for declaring the
factory referencesin a deployment descriptor

EES.7.1.1 I njection of Resource Manager Connection Factory
References

A field or amethod of an application component may be annotated with the
Resource annotation. The name and type of the factory are as described above. The
authenticationType and shareable elements of the Resource annotation may be
used to control the type of authentication desired for the resource and the
shareability of connection acquired from the factory, as described in the following
sections.

The following code example illustrates how an application component uses
annotations to declare resource manager connection factory references.

// The employee database.
@Resource javax.sql.DataSource employeeAppDB;

public void changePhoneNumber(...) {

// Invoke factory to obtain a resource. The security

// principal for the resource is not given, and

// therefore it will be configured by the Deployer.
java.sql.Connection con = employeeAppDB.getConnection();

}

It is possible to specify as part of the @Resource annotation the INDI name of
an entry to which the resource being defined will be bound.

// The customer database, Tooked up in the application environment.
@Resource(lookup="java:app/env/customerDB”) javax.sql.DataSource
customerAppDB;

The data source object being looked up in the previous example may have
been declared as follows.

@Resource(name="java:app/env/customerDB”,
type=javax.sql.DataSource.class)

Final Release

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

public class AnApplicationClass {

}

From apractical standpoint, declaring a commonly used data source at the
application level and referring to it using Tookup from multiple components may
simplify the task of deploying the application, since now the Deployer will have
to perform asingle binding operation for the application-level resource, instead of
multiple ones. The task can be further simplified by using a data source resource
definition, see Chapter EE.5, “ DataSource Resource Definition”. Of course,
nothing prevents the Deployer from separately binding each data source reference
if necessary.

EE.5.7.1.2 Programming I nterfaces for Resource Manager Connection
Factory References

The Application Component Provider may use resource manager connection factory
references to obtain connections to resources as follows.

» Assign an entry in the application component’ s naming environment to the re-
source manager connection factory reference. (See subsection 5.7.1.3 for infor-
mation on how resource manager connection factory referencesare declaredin
the deployment descriptor.)

* This specification recommends, but does not require, that al resource manag-
er connection factory references be organized in the subcontexts of the appli-
cation component’s environment, using a different subcontext for each
resource manager type. For example, al JDBC™ DataSource references
should be declared in the java: comp/env/jdbc subcontext, all IMS connec-
tion factories in the java: comp/env/jms subcontext, all JavaMail connection
factoriesin the java: comp/env/mail subcontext, and all URL connection fac-
toriesin the java: comp/env/url1 subcontext. Note that resource manager con-
nection factory references declared via annotations will not, by default,
appear in any subcontext.

* Lookup the resource manager connection factory object in the application
component’s environment using the JINDI interface.

* Invokethe appropriate method on the resource manager connection factory ob-
ject to obtain aconnection to the resource. Thefactory method isspecifictothe

91

92

resource type. It is possible to obtain multiple connections by calling the fac-
tory object multiple times.

The Application Component Provider can control the shareability of the
connections acquired from the resource manager connection factory. By default,
connections to a resource manager are shareable across other application
components in the application that use the same resource in the same transaction
context. The Application Component Provider can specify that connections
obtained from a resource manager connection factory reference are not shareable
by specifying the value of the res-sharing-scope deployment descriptor element
to be Unshareable. The sharing of connections to a resource manager allows the
container to optimize the use of connections and enables the container’s use of
local transaction optimizations.

The Application Component Provider has two choices with respect to dealing
with associating a principal with the resource manager access:

 Allow the Deployer to set up principal mapping or resource manager sign on
information. In this case, the application component code invokes a resource
manager connection factory method that has no security-related parameters.

 Sign on to the resource from the application component code. In this case, the
application component invokes the appropriate resource manager connection
factory method that takes the sign on information as method parameters.

The Application Component Provider uses the res-auth deployment
descriptor element to indicate which of the two resource authentication
approachesis used.

We expect that the first form (that is letting the Deployer set up the resource
sign on information) will be the approach used by most application components.

The following code sample illustrates obtaining a JDBC connection.

pubTlic void changePhoneNumber(...) {
// obtain the initial JINDI context
Context initCtx = new InitialContext();
// perform INDI Tookup to obtain resource manager

// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

Final Release

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

initCtx.Tookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a resource. The security
// principal for the resource is not given, and

// therefore it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();

EE.5.7.1.3 Declaration of Resource Manager Connection Factory
Referencesin Deployment Descriptor

Although aresource manager connection factory referenceisan entry in the
application component’s environment, the Application Component Provider must
not use an env-entry element to declareit.

Instead, the Application Component Provider must declare all the resource
manager connection factory references using either annotations on the application
component’s code or in the deployment descriptor using the resource-ref
elements. This allows the consumer of the application component’s JAR file (the
Application Assembler or Deployer) to discover all the resource manager
connection factory references used by an application component. Deployment
descriptor entries may also be used to specify injection of aresource manager
connection factory reference into an application component.

Each resource-ref element describes a single resource manager connection
factory reference. The resource-ref element consists of the description
element, the mandatory res-ref-name element, and the optional res-sharing-
scope, res-type, and res-auth elements. The res-ref-name €lement containsthe
name of the environment entry used in the application component’s code. The
name of the environment entry is relative to the java: comp/env context (for
example, the name should be jdbc/EmployeeAppDB rather than java: comp/env/
jdbc/EmployeeAppDB). The res-type €lement contains the Java programming
language type of the resource manager connection factory that the application
component code expects. The res-type element isoptional if an injection target is
specified for this resource; in this case the res-type defaults to the type of the
injection target. The res-auth element indicates whether the application
component code performs resource signon programmatically, or whether the
container signs on to the resource based on the principal mapping information

93

94

supplied by the Deployer. The Application Component Provider indicatesthe sign
on responsibility by setting the value of the res-auth element to Application or
Container. If not specified, the default is Container. The res-sharing-scope
element indicates whether connections to the resource manager obtained through
the given resource manager connection factory reference can be shared or whether
connections are unshareable. The value of the res-sharing-scope element is
Shareable Or Unshareable. If the res-sharing-scope element is not specified,
connections are assumed to be shareable.

A resource manager connection factory reference is scoped to the application
component whose declaration contains the resource-ref element. This means
that the resource manager connection factory reference is not accessible from
other application components at runtime, and that other application components
may define resource-ref elements with the same res-ref-name without causing
aname conflict.

The type declaration allows the Deployer to identify the type of the resource
manager connection factory.

Note that the indicated type is the Java programming language type of the
resource manager connection factory, not the type of the connection.

Thefollowing example isthe declaration of the resource reference used by the
application component illustrated in the previous subsection.

<resource-ref>
<description>
A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

The following example modifies the previous one by linking the resource
reference being defined to another one, using awell-known JNDI name for the
latter.

<resource-ref>

Final Release

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
<lookup-name>java:app/env/TheEmployeeDB</Tookup-name>
</resource-ref>

EE.5.7.1.4 Standard Resource Manager Connection Factory Types

The Application Component Provider must use the javax.sql.DataSource
resource manager connection factory type for obtaining JDBC API connections.

The Application Component Provider must use the
javax.jms.QueueConnectionFactory, the javax.jms.TopicConnectionFactory,
or the javax. jms.ConnectionFactory for obtaining JM S connections.

The Application Component Provider must use the javax.mail.Session
resource manager connection factory type for obtaining JavaMail API
connections.

The Application Component Provider must use the java.net.URL resource
manager connection factory type for obtaining URL connections.

Itis recommended that the Application Component Provider name JDBC API
data sources in the java: comp/env/jdbc subcontext, all IM'S connection factories
in the java: comp/env/jms subcontext, all JavaMail APl connection factoriesin
the java: comp/env/mai1 subcontext, and all URL connection factoriesin the
java:comp/env/url subcontext. Note that resource manager connection factory
references declared via annotations will not, by default, appear in any subcontext.

The Java EE Connector Architecture allows an application component to use
the annotation or API described in this section to obtain resource objects that
provide access to additional back-end systems.

EE.5.7.2 Deployer’s Responsibilities

The Deployer uses deployment tools to bind the resource manager connection
factory references to the actual resource factories configured in the target
operational environment.

The Deployer must perform the following tasks for each resource manager
connection factory reference declared in the deployment descriptor:

95

96

* Bind the resource manager connection factory reference to aresource manager

connection factory that exists in the operational environment. The Deployer
may use, for example, the INDI LinkRef mechanism to create asymbolic link
to the actual INDI name of the resource manager connection factory. There-
source manager connection factory type must be compatible with the type de-
clared in the res-type element. If the resource manager connection factory
referencesincludesalookup-name, the Deployer may choose whether to honor
it and have the corresponding lookup be performed, or override it with a bind-
ing of his own choosing.

Provide any additional configuration information that the resource manager
needs for opening and managing the resource. The configuration mechanism
is resource manager specific, and is beyond the scope of this specification.

If the value of the Resource annotation authenticationType €lement is
AuthenticationType.CONTAINER or the deployment descriptor’'s res-auth ele-
ment is Container, the Deployer isresponsible for configuring the sign on in-
formation for the resource manager. Thisis performed in a manner specific to
the container and resource manager; it is beyond the scope of this specifica-
tion.

For example, if principals must be mapped from the security domain and prin-
cipal realm used at the application component level to the security domain
and principal realm of the resource manager, the Deployer or System Admin-
istrator must define the mapping. The mapping is performed in a manner spe-
cific to the container and resource manager; it is beyond the scope of this
specification.

EE.5.7.3 Java EE Product Provider’s Responsibilities
The Java EE Product Provider isresponsible for the following:

* Provide the deployment tools that allow the Deployer to perform the tasks de-

scribed in the previous subsection.

* Provide the implementation of the resource manager connection factory class-

esthat are required by this specification.

« If the Application Component Provider setsthe authenticationType element

of the Resource annotation to AuthenticationType.APPLICATION or the res-
auth of aresource referenceto Application, the container must alow the ap-

Final Release

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

plication component to perform explicit programmatic sign on using the re-
source manager’s API.

If the Application Component Provider setsthe shareable element of the
Resource annotation to false or setsthe res-sharing-scope Of aresource
manager connection factory reference to Unshareable, the container must not
attempt to share the connections obtained from the resource manager connec-
tion factory reference’.

The container must provide tools that allow the Deployer to set up resource
sign on information for the resource manager references whose
authenticationType iSSet t0 AuthenticationType.CONTAINER OF WhoSe res-
auth element is set to Container. The minimum requirement is that the De-
ployer must be able to specify the username/password information for each re-
source manager connection factory reference declared by the application
component, and the container must be able to use the username/password com-
bination for user authentication when obtaining a connection by invoking the
resource manager connection factory.

Although not required by this specification, we expect that containers will

support some form of asingle sign on mechanism that spans the application server
and the resource managers. The container will alow the Deployer to set up the
resources such that the principal can be propagated (directly or through principal
mapping) to a resource manager, if required by the application.

While not required by this specification, most Java EE products will provide

the following features:

A tool to allow the System Administrator to add, remove, and configure are-
source manager for the Java EE Server.

» A mechanism to pool resources for the application components and otherwise
manage the use of resources by the container. The pooling must be transparent
to the application components.

EES.74 System Administrator’s Responsibilities

The System Administrator istypically responsible for the following:

1 Connections obtained from the same resource manager connection facto-
ry through a different resource manager connection factory reference
may be shareable.

97

98

» Add, remove, and configure resource managersin the Java EE Server environ-
ment.

In some scenarios, these tasks can be performed by the Deployer.

EE.5.8 Resour ce Environment Refer ences

This section describes the programming and deployment descriptor interfaces that
alow the Application Component Provider to refer to administered objects that are
associated with a resource (for example, a Connector CCl InteractionSpec
instance) by using “logical” names called resource environment references. The
resource environment references are special entriesin the application component’s
environment. The Deployer binds the resource environment references to
administered objects in the target operational environment.

EE.5.81 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to resource environment references.

EE.5811 I njection of Resource Environment References

A field or amethod of an application component may be annotated with the
Resource annotation to request injection of aresouce environment reference. The
name and type of the resource environment reference are as described earlier. The
authenticationType and shareable elements of the Resource annotation must not
be specified; resource environment entries are not shareable and do not require
authentication. The use of the Resource annotation to declare aresource
environment references differs from the use of the Resource annotation to declare
other environment references only in that the type of aresource environment
referenceis not one of the Javalanguage types used for other environment
references.

EE.5.8.1.2 Resource Environment Reference Programming I nterfaces

The Application Component Provider may use resource environment referencesto
locate administered objects that are associated with resources as follows.

Final Release

RESOURCEENVIRONMENT REFERENCES

« Assign an entry in the application component’ s environment to the reference.
(See subsection 5.8.1.3 for information on how resource environment referenc-
es are declared in the deployment descriptor.)

* This specification recommends, but does not require, that all resource envi-
ronment references be organized in the appropriate subcontext of the compo-
nent’s environment for the resource type. Note that resource environment
references declared via annotations will not, by default, appear in any subcon-
text.

 Look up the administered object in the application component’ s environment
using JNDI.

EE.5.8.1.3 Declaration of Resource Environment Referencesin
Deployment Descriptor

Although the resource environment referenceis an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry element to declareit. Instead, the Application Component Provider must
declare dl references to administered objects associated with resources using either
annotations on the application component’s code or the resource-env-ref
elements of the deployment descriptor. This allows the application component’s
JAR file consumer to discover al the resource environment references used by the
application component. Deployment descriptor entries may also be used to specify
injection of aresource environment reference into an application component.

Each resource-env-ref element describes the requirements that the
referencing application component has for the referenced administered object.
The resource-env-ref element contains optional description and resource-
env-ref-type elementsand the mandatory resource-env-ref-name element. The
resource-env-ref-type element isoptional if aninjection target is specified for
thisresource; in this case the resource-env-ref-type defaults to the type of the
injection target.

The resource-env-ref-name element specifies the resource environment
reference name. Its value is the environment entry name used in the application
component code. The name of the resource environment reference is relative to
the java: comp/env context. The resource-env-ref-type €element specifiesthe
expected type of the referenced object.

A resource environment reference is scoped to the application component
whose declaration contains the resource-env-ref element. This means that the
resource environment reference is not accessible to other application components

99

100

at runtime, and that other application components may define resource-env-ref
elements with the same resource-env-ref-name Without causing a name conflict.

A resource environment reference may specify a lookup-name tolink the
reference being defined to another one viaa JNDI name.

EE.5.8.2 Deployer’s Responsibilities
The Deployer isresponsible for the following:

» The Deployer must ensure that all the declared resource environment referenc-
es are bound to administered objects that exist in the operational environment.
The Deployer may use, for example, the INDI LinkRef mechanism to create a
symbolic link to the actual INDI name of the target object. The Deployer may
override the linkage preferences of aresource environment reference that in-
cludes a Tookup-name €lement.

» The Deployer must ensure that the target object is type-compatible with the
type declared for the resource environment reference. This means that the tar-
get abject must be of the type indicated in the Resource annotation or the
resource-env-ref-type € ement.

EE.5.8.3 Java EE Product Provider’s Responsibilities

The Java EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the Java EE Product Provider must be able to process the
information supplied in the class file annotations and the resource-env-ref
elementsin the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresolved resource environment references, and allow him or her to resolve a
resource environment reference by binding it to a specified compatible target
object in the environment.

EE.5.9 M essage Destination References
This section describes the programming and deployment descriptor interfaces that

allow the Application Component Provider to refer to message destination objects
by using “logical” names called message destination references. Message

Final Release

MESSAGEDESTINATION REFERENCES

destination references are specia entries in the application component’s
environment. The Deployer binds the message destination references to
admini stered message destinations in the target operational environment.

The requirements in this section only apply to Java EE products that include
support for IMS.

EE.5.9.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to message destination references.

EE.59.1.1 Injection of Message Destination References

A fidd or amethod of an application component may be annotated with the
Resource annotation to request injection of a message destination reference. The
name and type of the resource environment reference are as described earlier. The
authenticationType and shareable elements of the Resource annotation must not
be specified; message destination references are not shareable and do not require
authentication.

Note that when using the Resource annotation to declare a message
destination reference it is not possibleto link the reference to other referencesto
the same message destination, or to specify whether the message destination is
used to produce or consume messages. The deployment descriptor entries
described later do provide away to associate many message destination references
with a single message destination and to specify whether each message
destination reference is used to produce, consume, or both produce and consume
messages, so that the entire message flow of an application may be specified. The
Application Assembler may use these message destination links to link together
message destination references that have been declared using the Resource
anotation. A message destination reference declared via the Resource annotation
isassumed to be used to both produce and consume messages; this default may be
overridden using a deployment descriptor entry.

The following example illustrates how an application component uses the
Resource annotation to request injection of a message destination reference.

@Resource javax.jms.Queue stockQueue;

101

102

Thefollowing example illustrates how a message destination reference can be

linked to another one by specifying its INDI name, perhapsin a different
namespace, as a value for the Tookup element.

@Resource(lookup="java:app/env/TheOrderQueue”) javax.jms.Queue or-
derQueue;

EE.59.1.2 Message Destination Reference Programming | nterfaces

The Application Component Provider may use message destination references to
locate message destinations, as follows.

 Assign an entry in the application component’ s environment to the reference.

(See subsection 5.9.1.3 for information on how message destination references
are declared in the deployment descriptor.)

This specification recommends, but does not require, that all message destina-
tion references be organized in the appropriate subcontext of the component’s
environment for the resource type (for example, in the java: comp/env/jms
JNDI context for IMS Destinations). Note that message destination references
declared via annotations will not, by default, appear in any subcontext.

Look up the administered object in the application component’ s environment
using JNDI.

The following example illustrates how an application component uses a

message destination reference to locate a IM S Destination.

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the IMS StockQueue in the environment.
Object result = initCtx.lookup("java:comp/env/jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;

In the exampl e, the Application Component Provider assigned the

environment entry jms/StockQueue as the message destination reference name to
refer toaJM S queue.

Final Release

MESSAGEDESTINATION REFERENCES

EE.5.9.1.3 Declaration of Message Destination References in Deployment
Descriptor

Although the message destination reference is an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry eement to declareit. Instead, the Application Component Provider
should declare all references to message destinations using either the Resource
annotation in the application component’s code or the message-destination-ref
elements of the deployment descriptor. This allows the application component’s
JAR file consumer to discover al the message destination references used by the
application component. Deployment descriptor entries may also be used to specify
injection of a message destination reference into an application component.

Each message-destination-ref element describes the requirements that the
referencing application component has for the referenced destination. The
message-destination-ref element contains optional description, message-
destination-type, and message-destination-usage €lementsand the mandatory
message-destination-ref-name €lement.

Themessage-destination-ref-name €lement specifies the message
destination reference name. Its value is the environment entry name used in the
application component code. By default, the name of the message destination
referenceisrelative to the java: comp/env context (for example, the name should
be jms/StockQueue rather than java: comp/env/jms/StockQueue). The message-
destination-type element specifiesthe expected type of the referenced
destination. For example, in the case of a IMS Destination, its value might be
javax.jms.Queue. Themessage-destination-type elementisoptional if aninjection
target is specified for this message destination reference; in this case the message-
destination-type defaults to the type of the injection target. The message-
destination-usage element specifies whether messages are consumed from the
message destination, produced for the destination, or both. If not specified,
messages are assumed to be both consumed and produced.

A message destination reference is scoped to the application component
whose declaration contains the message-destination-ref element. This means
that the message destination reference is not accessible to other application
components at runtime, and that other application components may define
message-destination-ref elements with the samemessage-destination-ref-
name Without causing a name conflict.

The following example illustrates the declaration of message destination
references in the deployment descriptor.

103

104

<message-destination-ref>
<description>
This is a reference to a JMS queue used in the
processing of Stock info
</description>
<message-destination-ref-name>
jms/StockInfo
</message-destination-ref-name>
<message-destination-type>
javax.jms.Queue
</message-destination-type>
<message-destination-usage>
Produces
</message-destination-usage>
</message-destination-ref>

EE.5.9.2 Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common
logical destinations specified in the enterprise bean deployment descriptor, the
Application Assembler can specify the flow of messages within an application. The
Application Assembler usesthemessage-destination dement inan gjb-jar file, the
message-destination-1ink e ement of themessage-destination-ref element,
and the message-destination-1ink element of an gb-jar’'smessage-driven
element to link message destination references to acommon logical destination.

The Application Assembler specifies the link between message consumers
and producers as follows:

» The Application Assembler usesthe message-destination element in an gjb-
jar deployment descriptor to specify alogical message destination within the
application. The message-destination element defines amessage-
destination-name, which isused for the purpose of linking.

» The Application Assembler uses the message-destination-1ink element of
the message-destination-ref element of an application component that pro-
duces messagesto link it to the target destination. The value of the message-
destination-1ink element isthe name of the target destination, as defined in
the message-destination-name element of themessage-destination €le-
ment. The message-destination element can bein any EJB modulein the

Final Release

MESSAGE DESTINATION REFERENCES 105

same Java EE application as the referencing component. The Application As-
sembler uses the message-destination-usage e ement of the message-
destination-ref element to indicate that the referencing application compo-
nent produces messages to the referenced destination.

« If the consumer of messages from the common destination is a message-driv-
en bean, the Application Assembler uses the message-destination-1ink ele-
ment of the message-driven element to reference the logical destination. If
the Application Assembler links a message-driven bean to its source destina-
tion, he or she should use the message-destination-type element of the
message-driven €lement to specify the expected destination type. Otherwise,
the Application Assembler uses the message-destination-Tink element of
themessage-destination-ref element of the application component that con-
sumes messages to link to the common destination. In the latter case, the Ap-
plication Assembler uses the message-destination-usage element of the
message-destination-ref e ement to indicate that the application component
consumes messages from the referenced destination.

* To avoid the need to rename message destinations to have unique names with-
in an entire Java EE application, the Application Assembler may use the fol-
lowing syntax in the message-destination-1ink element of the referencing
application component. The Application Assembler specifies the path name
of the g/b-jar file containing the referenced message destination and appends
the message-destination-name Of the target destination separated from the
path name by #. The path name is relative to the referencing application com-
ponent JAR file. In this manner, multiple destinations with the same message-
destination-name may be uniquely identified.

« When linking message destinations, the Application Assembler must ensure
that the consumers and producers for the destination require a message desti-
nation of the same or compatibl e type, as determined by the messaging system.

EE.5.9.3 Deployer’s Responsibilities
The Deployer isresponsible for the following:

» The Deployer must ensure that all the declared message destination references
are bound to administered objects that exist in the operational environment.
The Deployer may use, for example, the INDI LinkRef mechanism to create a
symbolic link to the actual INDI name of the target object. The Deployer may

106

override the linkage preferences of a message destination reference that in-
cludes a Tookup-name €lement.

» The Deployer must ensure that the target object is type-compatible with the
type declared for the message destination reference. This meansthat the target
object must be of the type indicated in the message-destination-type €le-
ment.

» The Deployer must observe the message destination links specified by the Ap-
plication Assembler.

EE.5.9.4 Java EE Product Provider’s Responsibilities

The Java EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the Java EE Product Provider must be able to process the
information supplied in the message-destination-ref eementsin the deployment
descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresol ved message destination references, and allow him or her to resolve a
message destination reference by binding it to a specified compatible target object
in the environment.

EE.5.10 User Transaction References

Certain Java EE application component types are allowed to use the JTA
UserTransaction interface to start, commit, and abort transactions. Such
application components can find an appropriate object implementing the
UserTransaction interface by looking up the INDI name java: comp/
UserTransaction Of by requesting injection of aUserTransaction object using the
Resource annotation. The authenticationType and shareable elements of the
Resource annotation must not be specified. The container isonly required to
providethe java: comp/UserTransaction Name, or inject aUserTransaction
object, for those components that can validly make use of it. Any such referencetoa
UserTransaction object isonly valid within the component instance that performed
the lookup. See theindividual component definitions for further information.

Thefollowing exampleillustrates how an application component acquires and
uses aUserTransaction object viainjection.

Final Release

USERTRANSACTIONREFERENCES 107

@Resource UserTransaction tx;
public void updateData(...) {

// Start a transaction.
tx.begin(Q);

// Perform transactional operations on data.

// Commit the transaction.
tx.commit();

Thefollowing exampleillustrates how an application component acquires and
uses aUserTransaction object using a JNDI lookup.

public void updateData(...) {

// Obtain the default initial INDI context.
Context initCtx = new InitialContext();

// Look up the UserTransaction object.
UserTransaction tx = (UserTransaction)initCtx.lookup(
"java:comp/UserTransaction™);

// Start a transaction.
tx.begin();

// Perform transactional operations on data.

// Commit the transaction.
tx.commit();

A UserTransaction object reference may also be declared in a deployment
descriptor in the same way as a resource environment reference. Such a
deployment descriptor entry may be used to specify injection of a
UserTransaction object.

108

The requirementsin this section only apply to Java EE products that include
support for JTA.

EE.5.10.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a
UserTransaction object using aResource annotation, or using the defined name to
look up theUserTransaction object.

Only some application component types are required to be able to access a
UserTransaction object; see Table EE.6-1 in this specification and the EJB
specification for details.

EE.5.10.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider isresponsible for providing an appropriate
UserTransaction object as required by this specification.

EE.5.11 TransactionSynchronizationRegistry References

The JTA TransactionSynchronizationRegistry interface may be used by system
level components such as persistence managers that may be packaged with EJB or
web application components. Such components can find an appropriate object
implementing the TransactionSynchronizationRegistry interface by looking up
the INDI name java: comp/TransactionSynchronizationRegistry Or by
requesting injection of aTransactionSynchronizationRegistry object using the
Resource annotation. The authenticationType and shareable elements of the
Resource annotation must not be specified. The container is only required to
providethe java:comp/TransactionSynchronizationRegistry name, or inject a
TransactionSynchronizationRegistry object, for those components that can
validly make use of it. Any such referenceto a
TransactionSynchronizationRegistry object isonly valid within the component
instance that performed the lookup. See the individual component definitions for
further information.

A TransactionSynchronizationRegistry object reference may aso be
declared in a deployment descriptor in the same way as a resource environment
reference. Such a deployment descriptor entry may be used to specify injection of
aTransactionSynchronizationRegistry Object.

Final Release

ORBREFERENCES

The requirements in this section only apply to Java EE products that include
support for JTA.

EE.5.11.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a
TransactionSynchronizationRegistry oObject using aResource annotation, or
using the defined name to look up the TransactionSynchronizationRegistry
object.

Only some application component types are required to be able to access a
TransactionSynchronizationRegistry object; see Table EE.6-1 in this
specification and the EJB specification for details.

EE.5.11.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing an appropriate
TransactionSynchronizationRegistry Object asrequired by this specification.

EE.5.12 ORB References

Some Java EE applications will need to make use of the CORBA ORB to perform
certain operations. Such applications can find an appropriate object implementing
the orB interface by looking up the INDI name java: comp/ORB Or by requesting
injection of an 0rRB object. The container is required to provide the java: comp/ORB
name for al components except applets. Any such reference to aors object isonly
valid within the component instance that performed the lookup.

Thefollowing exampleillustrates how an application component acquires and
uses an ORB abject viainjection.

@Resource ORB orb;
public void method(...) {

// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");

109

110

Thefollowing exampleillustrates how an application component acquires and
uses an ORB object using a JINDI lookup.

pubTlic void method(...) {

// Obtain the default initial INDI context.
Context initCtx = new InitialContext();

// Look up the ORB object.
ORB orb = (ORB)initCtx.lookup("java:comp/ORB");

// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references("RootPOA™);

}

An 0RB object reference may also be declared in a deployment descriptor in
the same way as a resource manager connection factory reference. Such a
deployment descriptor entry may be used to specify injection of an 0rRB object.

The 0rB instance available under the INDI name java: comp/ORB may always
be a shared instance. By default, the orB instance injected into a component or
declared via a deployment descriptor entry may also be a shared instance.
However, the application may set the shareable element of the Resource
annotation to false, or may set the res-sharing-scope element in the deployment
descriptor to UnshareabTe, to request a non-shared ORB instance.

The requirementsin this section only apply to Java EE products that include
support for interoperability using CORBA.

EE.5.12.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requessting injection of the
ORB object using the Resource annotation, or using the defined name to look up the

ORB object. If the shareable element of the Resource annotation is set to false, the
ORB object injected will not be the shared instance used by other componentsin the
application but instead will be a private ORB instance used only by this component.

Final Release

PERSISTENCE UNIT REFERENCES

EE.5.12.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider isresponsible for providing an appropriate ore object
as required by this specification.

EE.5.13 Per sistence Unit References

This section describes the metadata annotations and depl oyment descriptor elements
that allow the application component code to refer to the entity manager factory for
apersistence unit using alogical name called a persistence unit reference.
Persistence unit references are specia entriesin the application component’s
environment. The Deployer binds the persistence unit references to entity manager
factories that are configured in accordance with the persistence.xm1 specification
for the persistence unit, as described in the Java Persistence specification.

The requirements in this section only apply to Java EE products that include
support for the Java Persistence API.

EE.5.13.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating
the entity manager factory for a persistence unit and defines his or her
responsibilities. The first subsection describes annotationsfor injecting referencesto
an entity manager factory for a persistence unit; the second describes the API for
accessing an entity manager factory using a persistence unit reference; and the third
describes syntax for declaring persistence unit references in a deployment
descriptor.

EE.5.13.1.1 Injection of Persistence Unit References

A fidd or amethod of an application component may be annotated with the
PersistenceUnit annotation. The name €lement specifiesthe name under which the
entity manager factory for the referenced persistence unit may be located in the
JNDI naming context. The optional unitName €lement specifies the name of the
persistence unit as declared in the persistence.xm1 file that defines the persistence
unit.

The following code example illustrates how an application component uses
annotations to declare persistence unit references.

111

112

@Persistencelnit
EntityManagerFactory emf;

@PersistenceUnit(unitName="InventoryManagement")
EntityManagerFactory inventoryEMF;

EE.5.13.1.2 Programming I nterfaces for Persistence Unit References

The Application Component Provider must use persistence unit referencesto obtain
references to entity manager factories asfollows.

Assign an entry in the application component’ s environment to the persistence
unit reference. (See subsection 5.13.1.3 for information on how persistence
unit references are declared in the deployment descriptor.)

The EJB specification recommends, but does not require, that all persistence
unit references be organized in the java: comp/env/persistence subcontexts
of the bean’s environment.

L ookup the entity manager factory for the persistence unit in the application
component’s environment using the EJBContext 1ookup method or using the
INDI API.

Invokethe appropriate method on the entity manager factory to obtain an entity
manager instance.

The following code sample illustrates obtaining an entity manager factory

when the EIJBContext 1ookup method is used.

@PersistenceUnit(name="persistence/InventoryAppDB”)

@Stateless

public class InventoryManagerBean implements InventoryManager {
@Resource SessionContext ctx;

public void updateInventory(...) {
// use context Tookup to obtain entity manager factory
EntityManagerFactory emf = (EntityManagerFactory)

ctx.Tookup("persistence/InventoryAppDB™);

// use factory to obtain application-managed entity manager
EntityManager em = emf.createEntityManager();

Final Release

PERSISTENCE UNIT REFERENCES

The following code sample illustrates obtaining an entity manager factory
when the INDI APIs are used directly.

@PersistenceUnit(name="persistence/InventoryAppDB”)

@Stateless

public class InventoryManagerBean implements InventoryManager {
EJBContext ejbContext;

public void updateInventory(...) {

// obtain the initial JINDI context
Context initCtx = new InitialContext();

// perform INDI Tookup to obtain entity manager factory
EntityManagerFactory = (EntityManagerFactory)
initCtx.Tookup(
"java:comp/env/persistence/InventoryAppDB");

// use factory to obtain application-managed entity manager
EntityManager em = emf.createEntityManager();

EE.5.13.1.3 Declaration of Persistence Unit Referencesin Deployment
Descriptor

Although a persistence unit reference is an entry in the application component’s
environment, the Application Component Provider must not use an env-entry
element to declareit.

Instead, if metadata annotations are not used, the Application Component
Provider must declare al the persistence unit references in the deployment
descriptor using the persistence-unit-ref elements. Thisallowsthe Application
Assembler or Deployer to discover all the persistence unit references used by an
application component. Deployment descriptor entries may also be used to
specify injection of a persistence unit reference into an application component.

Each persistence-unit-ref element describes a single entity manager
factory reference for the persistence unit. The persistence-unit-ref element

113

114

consists of the optional description and persistence-unit-name €lements, and
the mandatory persistence-unit-ref-name element.

The persistence-unit-ref-name €lement contains the name of the
environment entry used in the application component’s code. The name of the
environment entry is relative to the java: comp/env context (e.g., the name should
be persistence/InventoryAppDB rather than java:comp/env/persistence/
InventoryAppDB). The persistence-unit-name € ement isthe name of the
persistence unit, as specified in the persistence.xm1 file for the persistence unit.

The following example is the declaration of a persistence unit reference used
by the InventoryManager enterprise bean illustrated in the previous subsection.

<persistence-unit-ref>
<description>
Persistence unit for the inventory management
application.
</description>
<persistence-unit-ref-name>
persistence/InventoryAppDB
</persistence-unit-ref-name>
<persistence-unit-name>
InventoryManagement
</persistence-unit-name>
</persistence-unit-ref>

EE.5.13.2 Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the
deployment descriptor to disambiguate a reference to a persistence unit. The
Application Assembler (or Application Component Provider) may usethefollowing
syntax in the persistence-unit-name element of the referencing application
component to avoid the need to rename persistence units to have unique names
within a Java EE application. The Application Assembler specifiesthe path name of
theroot of the persistence.xml filefor the referenced persistence unit and appends
the name of the persistence unit separated from the path name by # . The path name
isrelative to the referencing application component jar file. In this manner, multiple
persistence units with the same persistence unit name may be uniquely identified
when the Application Assembler cannot change persistence unit names.

For example,

Final Release

PERSISTENCE UNIT REFERENCES

<persistence-unit-ref>
<description>
Persistence unit for the inventory management
application.
</description>
<persistence-unit-ref-name>
persistence/InventoryAppDB
</persistence-unit-ref-name>
<persistence-unit-name>
../1ib/inventory.jar#InventoryManagement
</persistence-unit-name>
</persistence-unit-ref>

The Application Assembler usesthe persistence-unit-name element to link
the persistence unit name InventoryManagement declared in the
InventoryManagerBean tO the persistence unit named InventoryManagement
defined in inventory.jar.

The following rules apply to how a deployment descriptor entry may override
aPersistencelnit annotation:

» The relevant deployment descriptor entry islocated based on the INDI name
used with the annotation (either defaulted or provided explicitly).

* The persistence-unit-name overridesthe unitName € ement of the annota-
tion. The Application Assembler or Deployer should exercise caution in
changing this value, if specified, as doing so islikely to break the application.

« Theinjection target, if specified, must name exactly the annotated field or
property method.

EE.5.13.3 Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence unit reference to the
actual entity manager factory configured for the persistence in the target operational
environment.

The Deployer must perform the following tasks for each persistence unit
reference declared in the metadata annotations or deployment descriptor:

115

116

 Bind the persistence unit reference to an entity manager factory configured for
the persistence unit that exists in the operational environment. The Deployer
may use, for example, the INDI LinkRef mechanism to create asymbolic link
to the actual INDI name of the entity manager factory.

* If the persistence unit name is specified, the Deployer should bind the persis-
tence unit reference to the entity manager factory for the persistence unit
specified as the target.

» Provide any additional configuration information that the entity manager fac-
tory needs for managing the persistence unit, as described in the Java Persis-
tence specification.

EE.5.134 Java EE Product Provider’s Responsibility

The Java EE Product Provider is responsible for the following:

* Provide the deployment tools that allow the Deployer to perform the tasks de-
scribed in the previous subsection.

* Provide the implementation of the entity manager factory classes for the per-
sistence unitsthat are configured with the container. Theimplementation of the
entity manager factory classes may be provided by the container directly or by
the container in conjunction with a third-party persistence provider, as de-
scribed in the Java Persistence specification.

EE.5.13.5 System Administrator’s Responsibility

The System Administrator istypically responsible for the following:

» Add, remove, and configure entity manager factories in the server environ-
ment.

In some scenarios, these tasks can be performed by the Deployer.

EE.5.14 Per sistence Context References

This section describes the metadata annotati ons and deployment descriptor elements
that allow the application component code to refer to a container-managed entity
manager of a specified persistence context type using alogical name called a
persistence context reference. Persistence context references are specia entriesin

Final Release

PERSISTENCE CONTEXT REFERENCES

the application component’s environment. The Deployer binds the persistence
context references to container-managed entity managers for persistence contexts of
the specified type and configured in accordance with their persistence unit, as
described in the Java Persistence specification.

The requirements in this section only apply to Java EE products that include
support for the Java Persistence API.

EE.5.14.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating
contai ner-managed entity managers and defines his or her responsibilities. The first
subsection describes annotations for injecting references to container-managed
entity managers, the second describes the API for accessing references to container-
managed entity managers; and the third describes syntax for declaring these
referencesin a deployment descriptor.

EE.5.14.1.1 Injection of Persistence Context References

A field or amethod of an application component may be annotated with the
PersistenceContext annotation. The name element specifies the name under which
a container-managaed entity manager for the referenced persistence unit may be
located in the INDI naming context. The optional uni tName element specifiesthe
name of the persistence unit asdeclared inthe persistence.xm1 filethat definesthe
persistence unit. The optional type element specifies whether a transaction-scoped
or extended persistence context isto be used. If thetypeis not specified, a
transaction-scoped persistence context will be used. References to container-
managed entity managers with extended persistence contexts can only be injected
into stateful session beans. The optional properties element specifies configuration
properties to be passed to the persistence provider when the entity manager is
created.

The following code example illustrates how an EJB component uses
annotations to declare persistence context references.

@PersistenceContext(type=EXTENDED)
EntityManager em;

117

118

EE.5.14.1.2 Programming I nterfacesfor Persistence Context References

The Application Component Provider must use persistence context referencesto
obtain references to a container-managed entity manager configured for a
persistence unit as follows:

» Assign an entry in the application component’ s environment to the persistence
context reference. (See subsection 5.14.1.3 for information on how persistence
context references are declared in the deployment descriptor.)

» The EJB specification recommends, but does not require, that all persistence
context references be organized in the java: comp/env/persistence subcon-
texts of the bean’s environment.

* Lookup the container-managed entity manager for the persistence unit in the
application component’ senvironment using the EJBContext 1ookup method or
using the INDI API.

The following code sample illustrates obtaining an entity manager for a
persistence context when the EJBContext Tookup method is used.

@PersistenceContext(name="persistence/InventoryAppMgr”)

@Stateless

public class InventoryManagerBean implements InventoryManager {
@Resource SessionContext ctx;

public void updateInventory(...) {

// use context Tookup to obtain container-managed

// entity manager

EntityManager em = (EntityManager)
ctx.lookup("persistence/InventoryAppMgr");

}

The following code sample illustrates obtaining an entity manager when the
JNDI APlsare used directly.

@PersistenceContext(name="persistence/InventoryAppMgr”)

@Stateless

public class InventoryManagerBean implements InventoryManager {
EJBContext ejbContext;

Final Release

PERSISTENCE CONTEXT REFERENCES

public void updateInventory(...) {

// obtain the initial JINDI context
Context initCtx = new InitialContext();

// INDI Tookup to obtain container-managed entity manager
EntityManager = (EntityManager)
initCtx. Tookup(
"java:comp/env/persistence/InventoryAppMgr");

EE.5.14.1.3 Declaration of Persistence Context Referencesin Deployment
Descriptor

Although a persistence context reference is an entry in the application component’s
environment, the Application Component Provider must not use an env-entry
element to declareit.

Instead, if metadata annotations are not used, the Application Component
Provider must declare al the persistence context references in the deployment
descriptor using the persistence-context-ref elements. Thisallows the
Application Assembler or Deployer to discover all the persistence context
references used by an application component. Deployment descriptor entries may
also be used to specify injection of a persistence context reference into a bean.

Each persistence-context-ref element describes a single container-
managed entity manager reference. The persistence-context-ref element
consists of the optional description, persistence-unit-name, persistence-
context-type, and persistence-property elements, and the mandatory
persistence-context-ref-name €lement.

The persistence-context-ref-name €lement contains the name of the
environment entry used in the application component’s code. The name of the
environment entry is relative to the java: comp/env context (e.g., the name should
be persistence/InventoryAppMgr rather than java: comp/env/persistence/
InventoryAppMgr). The persistence-unit-name element isthe name of the
persistence unit, as specified in the persistence.xm1 file for the persistence unit.
The persistence-context-type element specifies whether a transaction-scoped
or extended persistence context isto be used. Itsvalueis either Transaction or

119

120

Extended. If the persistence context type is not specified, a transaction-scoped
persistence context will be used. The optional persistence-property elements
specify configuration properties that are passed to the persistence provider when
the entity manager is created.

The following example is the declaration of a persistence context reference
used by the InventoryManager enterprise bean illustrated in the previous
subsection.

<persistence-context-ref>
<description>
Persistence context for the inventory management
application.
</description>
<persistence-context-ref-name>
persistence/InventoryAppDB
</persistence-context-ref-name>
<persistence-unit-name>
InventoryManagement
</persistence-unit-name>
</persistence-context-ref>

EE.5.14.2 Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the
deployment descriptor to specify areference to a persistence unit using the syntax
described in Section EE.5.13.2, “Application Assembler's Responsibilities” In this
manner, multiple persistence units with the same persistence unit name may be
uniquely identified when the persistence unit names cannot be changed.

For example,

<persistence-context-ref>

<description>
Persistence context for the inventory management
application.

</description>

<persistence-context-ref-name>
persistence/InventoryAppDB

</persistence-context-ref-name>

Final Release

PERSISTENCE CONTEXT REFERENCES

<persistence-unit-name>
../1ib/inventory.jar#InventoryManagement
</persistence-unit-name>
</persistence-context-ref>

The Application Assembler uses the persistence-unit-name element to
link the persistence unit name InventoryManagement declared in the
InventoryManagerBean tO the persistence unit named InventoryManagement
definedin inventory.jar.

The following rules apply to how a deployment descriptor entry may override
aPersistenceContext annotation:

» The relevant deployment descriptor entry islocated based on the INDI name
used with the annotation (either defaulted or provided explicitly).

* The persistence-unit-name overrides the unitName € ement of the
annotation. The Application Assembler or Deployer should exercise caution
in changing this value, if specified, as doing so islikely to break the
application.

e Thepersistence-context-type, if specified, overrides the type element of
the annotation. In general, the Application Assembler or Deployer should
never change the value of this element, as doing so is likely to break the
application.

» Any persistence-property elements are added to those specified by the
PersistenceContext annotation. If the name of a specified property isthe
same as one specified by the PersistenceContext annotation, the value
specified in the annotation is overridden.

» Theinjection target, if specified, must name exactly the annotated field or
property method.

EE.5.14.3 Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence context reference to the
contai ner-managed entity manager for the persistence context of the specified type
and configured for the persistence unit in the target operational environment.

The Deployer must perform the following tasks for each persistence context
reference declared in the metadata annotations or deployment descriptor:

121

122

* Bind the persistence context reference to a container-managed entity manager
for a persistence context of the specified type and configured for the persis-
tence unit as specified inthe persistence.xm1 file for the persistence unit that
existsin the operational environment. The Deployer may use, for example, the
JNDI LinkRef mechanism to create asymbolic link to the actual INDI name of
the entity manager.

* If the persistence unit name is specified, the Deployer should bind the persis-
tence context reference to an entity manager for the persistence unit specified
asthe target.

 Provide any additional configuration information that the entity manager fac-
tory needs for creating such an entity manager and for managing the persis-
tence unit, as described in the Java Persistence specification.

EE.5.144 Java EE Product Provider’s Responsibility
The Java EE Product Provider is responsible for the following:

* Provide the deployment tools that allow the Deployer to perform the tasks de-
scribed in the previous subsection.

* Provide the implementation of the entity manager classes for the persistence
units that are configured with the container. Thisimplementation may be pro-
vided by the container directory or by the container in conjunction with athird-
party persistence provider, as described in the Java Persistence specification.

EE.5.14.5 System Administrator’s Responsibility
The System Administrator istypically responsible for the following:

» Add, remove, and configure entity manager factories in the server environ-
ment.

In some scenarios, these tasks can be performed by the Deployer.

EE.5.15 Application Name and M odule Name Refer ences

A component may access the name of the current application using the pre-defined
JNDI name java:app/AppName. A component may access the name of the current

Final Release

VALIDATORAND VALIDATORFACTORY REFERENCES

module using the pre-defined JINDI name java:module/ModuleName. Both of these
names are represented by String objects.

EE.5.15.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of the
application name or module name using aResource annotation on astring method

or field, or using the defined name to look up the application name or module name.

EE.5.15.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider isresponsible for providing the correct application
name and module name String objects as required by this specification.

EE.5.16 Validator and Validator Factory References

This section describes the metadata annotations and deployment descriptor entries
that allow an application to obtain instances of the Bean Validation validator and
ValidatorFactory types.

Applications that need to use those interfaces can find appropriate objects by
looking up the name java: comp/validator for validator and java:comp/
ValidatorFactory for validatorFactory, Or by requesting the injection of an
object of the appropriate type viathe Resource annotation. The
authenticationType and shareable elements of the Resource annotation must not
be specified.

@Resource ValidatorFactory validatorFactory;

@Resource Validator validator;

For validator objects, the default validation context is used. This means that
all such vatlidatorswill be equivalent to those obtained by first acquiring avali-
datorFactory and then invoking the getvalidator method on it with no
arguments.

In other words, the following two code snippets are equivalent:

// obtaining a Validator directly
Context initCtx = new InitialContext();

123

124

Validator validator = (Validator)initCtx.lookup(
"java:comp/Validator™);

// obtaining a Validator from a ValidatorFactory
Context initCtx = new InitialContext();
Validator validator =
((vValidatorFactory) initCtx.Tookup(
"java:comp/ValidatorFactory™))
.getValidator(Q);

A Vvalidator Or ValidatorFactory object reference may also bedeclaredina
deployment descriptor in the same way as aresource environment reference.

In order to customize the returned validatorFactory, an b, web or
application client module may specify a Bean Validation XML deployment
descriptor. The name of the descriptor iSWEB-INF/validation.xm1 for web
modules, META-INF/validation.xm1 for al other types of modules.

A validation deployment descriptor only affects validatorFactory instances
in that module.

There is no per-application validation deployment descriptor.

EE.5.16.1 Application Component Provider's Responsibilities

The Application Component Provider is responsible for requesting injection of a
Validator or of avalidatorFactory USINgaResource annotation, or using the
defined namesto ook up avalidator Or ValidatorFactory instance.

The Application Component Provider may customize the validatorFactor
and (indirectly) validator instances by including a Bean Validation deployment
descriptor inside a specific module of the application.

EE.5.16.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing appropriate
Validator and ValidatorFactory Objectsasrequired by this specification.

For the benefit of implementors, we note that the Bean Validation API
includes avalidatorFactoryBuilder interface that can be used to create a
validatorFactory configured according to the contents of a validation
deployment descriptor in the form of ajava.io.InputStream.

Final Release

DATASOURCERESOURCEDEFINITION

EE.5.17 DataSour ce Resour ce Definition

In addition to referencing resources as defined in this chapter, an application may
also define abataSource resource. A DataSource resourceis used to accessa
database using a JDBC driver.

The DataSource resource may be defined in any of the INDI hamespaces
described in Section EE.5.2.2, “Application Component Environment
Namespaces’. For example, aDataSource resource may be defined:

* inthe java:comp namespace, for use by a single component;

* inthe java:module Nnamespace, for use by all componentsin amodule;
* inthe java:app hamespace, for use by all componentsin an application;
* inthe java:global nhamespace, for use by all applications.

A DataSource resource may be defined in aweb module, EJB module,
application client module, or application deployment descriptor using the data-
source e€lement.

For example:

<data-source>

<description>Sample DataSource definition</description>
<name>java:app/MyDataSource</name>
<class-name>com. foobar.MyDataSource</class-name>
<server-name>myserver.com</server-name>
<port-number>6689</port-number>
<database-name>myDatabase</database-name>
<user>lance</user>
<password>secret</password>
<property>

<name>Propertyl</name>

<value>10</value>
</property>
<property>

<name>Property2</name>

<value>20</value>
</property>
<login-timeout>0</login-timeout>
<transactional>false</transactional>
<isolation-1evel>TRANSACTION_READ_COMMITTED</isolation-level>
<initial-pool-size>0</initial-pool-size>

125

126

<max-pool-size>30</max-pool-size>

<min-pool-size>20</min-pool-size>

<max-idle-time>0</max-idle-time>

<max-statements>50</max-statements>
</data-source>

A DataSource resource may also be defined using the bataSourceDefinition
annotation on a container-managed class, such as a servlet or enterprise bean
class.

For example:

@DataSourceDefinition(name="java:app/MyDataSource",
className="com. foobar.MyDataSource",
portNumber=6689,
serverName="myserver.com",
user="Tance",
password="secret")

(Of course, we do not recommend including passwords to production systems
in the code, but it's often useful while testing. Passwords, or other parts of the
DataSource definition, can be overridden by a deployment descriptor when the
application is deployed.)

Once defined, aDbataSource resource may be referenced by a component
using the resource-ref deployment descriptor element or the Resource
annotation. For example, the above bataSource could be referenced as follows:

@Stateless

public class MySessionBean {
@Resource(lookup = "java:app/MyDataSource")
DataSource myDB;

EE.5.17.1 Application Component Provider's Responsibilities

The Application Component Provider is responsible for the definition of a
DataSource USiNg aDataSourceDefinition annotation or the data-source
deployment descriptor element.

Fina Release

MANAGED BEAN REFERENCES

EE.5.17.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider isresponsible for configuring abataSource
according to the definition provided by the Application Component Provider and
making it available in INDI under the specified name.

EE.5.18 Managed Bean References

This section describes the metadata annotations and deployment descriptor entries
that allow an application to obtain instances of a Managed Bean.

Aninstance of a named Managed Bean can be obtained by looking up its
name in JNDI using the same naming scheme used for EJB components:

java:app/<module-name>/<bean-name>

java:module/<bean-name>

The latter will only work within the module the Managed Bean is declared in.
Each such lookup must return a new instance.

Alternatively, the Resource annaotation can be used to request the injection of
aManaged Bean given either its type or its name. If anameis specified using the
Tookup €lement then the type of the resource can be any of the types that the
Managed Bean class implements, including any of itsinterfaces. If no nameis
specified, the type must be the Managed Bean class itself. (Note that the name
element of the Resource annotation serves an entirely different purpose than the
Tookup €lement, consistently with other uses of Resource in this specification.)
The authenticationType and shareable €lements of the Resource annotation
must not be specified.

For example, given a ShoppingCartBean bean named “cart” defined in the
same module as the client code and implementing the ShoppingCart interface, a
client may use any of the following methods to obtain an instance of the bean
class:

@Resource ShoppingCartBean cart;

@Resource(lookup="java:module/cart”) ShoppingCart cart;

127

128

ShoppingCart cart = (ShoppingCart) context.lookup(“java:module/
cart”);

References to managed beans can be declared in the deployment descriptor,
using the resource-ref element. The res-type element must contain atype that
the managed bean implements. The Tookup-name must be present and refer to a
managed bean by name. The res-sharing-scope and res-auth e ements may be
omitted; if present, they must have the values Shareable and Container
respectively, so as to match the default values of the corresponding elements of
the Resource annotation.

The following example shows how to declare references to the shopping cart
bean of the previous example, thistime using descriptors. (To make the example
somewhat more realistic, one should add an injection-target child element to
resource-ref.)

<resource-ref>
<res-ref-name>bean/cart</ref-ref-name>
<ref-type>com.acme.ShoppingCart</ref-type>
<lookup-name>java:module/cart</lookup-name>
</resource-ref>

MB.5.18.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a
Managed Bean or for looking it up in INDI using an appropriate name.

MB.5.18.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing appropriate instances of
the requested Managed Bean class as required by this specification.

EE.5.19 Bean Manager References

This section describes the metadata annotations and deployment descriptor entries

that allow an application to obtain instances of the CDI BeanManager type.
Typically, only portable extensions using the CDI SPI need to access a

BeanManager. Application code may occasionally require access to that interface;

Final Release

SUPPORT FOR DEPENDENCY INJECTION (JSR-330)

in that case, the application should either look up a BeanManager instance in JINDI
under the name java: comp/BeanManager, O request the injection of an object of
type javax.enterprise.inject.spi.BeanManager ViatheResource annotation. If
the latter, the authenticationType and shareable elements of the Resource
annotation must not be specified.

@Resource BeanManager manager;

Per the CDI specification, abean can also request the injection of a
BeanManager Using the Inject annotation.

@Inject BeanManager manager;

A BeanManager object reference may also be declared in a deployment
descriptor in the same way as a resource environment reference.

A bean manager is only available in modulesin which CDI has been enabled.

EE.5.19.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a
BeanManager instance USINg aResource annotation, or using the defined nameto
look up an instance in INDI.

It isan error to request injection of aBeanManager in amodule in which CDI
has not been enabled.

EE.5.19.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider isresponsible for providing appropriate BeanManager
instances as required by this specification in modulesin which CDI has been
enabled.

EE.5.20 Support for Dependency | njection (JSR-330)

In Java EE, support for dependency injection annotations as specified in the
Dependency Injection for Java specification (JSR-330) is mediated by CDI (JSR-
299). Containers must support injection points annotated with
@javax.inject.Inject only tothe extent dictated by CDI. In particular, support for
DI annotationsis conditional to their being used by a classwhich is part of abean

129

130

archive as specified by CDI. (In layman’sterms, abean archive is an archive, for
example an g/b module, for which CDI support has been enabled by means of a
META-INF/beans.xm1 descriptor.) Please note that, according to the CDI
specification, support for application client modules as bean archivesis optional.
Per the CDI specification, dependency injection is supported on managed
beans. There are currently three ways for a class to become a managed bean:

1. Being an EJB session bean component.
2. Being annotated with the @M anagedBean annotation.
3. Satisfying the conditions in Section 3.1 of the CDI specification.

Classes that satisfy at least one of these conditions will be eligible for full
dependency injection support, as described in CDI.

Clearly, in the absence of any additional annotations, most component classes
listed in Table EE.5-1 will not be managed beans. So as to make injection support
more uniform across al component types, Java EE containers are required to
support field or method injection (but not constructor injection) using
@javax.inject.Inject on all component classeslisted in Table EE.5-1 when the
containing archive is a bean archive. Such injection must be performed in the
same logical phase as resource injection of @Resource-annotated fields and
methods; in particular, dependency injection must precede the invocation of any
methods annotated with @PostConstruct. |n supporting such injection points, the
container must behave asiif it carried out the following steps, involving the use of
the CDI SPI.

1. Obtain a BeanManager instance.

2. Obtain acreational context for the component being injected by calling the
BeanManager.getCreationalContext() method.

3. For each injection point, create an InjectionPoint instance. The getBean()
method of thisinstance must return NULL, since the component isnot abeanin
the CDI sense. (If it were, it would fall under direct control of CDI, and this
sequence of steps would not be applicableto it.)

4. For each injection point, obtain an injectable reference by calling the
BeanManager.getInjectableReference(InjectionPoint,
CreationalContext) method with the InjectionPoint created at step 3 and
the CreationalContext Obtained at step 2.

5. Inject the resulting reference into the component that is the target of the injec-
tion.

Final Release

SUPPORT FOR DEPENDENCY INJECTION (JSR-330) 131

Containers may optimize the steps above, e.g. by avoiding calls to the actual
CDI SPI and relying on container-specific interfaces instead, as long as the
outcome is the same.

132

Final Release

cureren EE.O

Application Programmin(j
Interface

T his Chapter describes API requirements for the Java™ Platform, Enterprise
Edition (Java EE). Java EE requires the provision of a number of APIsfor use by
Java EE applications, starting with the core Java APIs and including many
additional Java technologies.

EE.6.1 Required APIs

Java EE application components execute in runtime environments provided by the
containersthat are apart of the Java EE platform. The full Java EE platform
supports four types of containers corresponding to Java EE application component
types: application client containers, applet containers, web containers for servlets
and JSP pages, and enterprise bean containers. Java EE profiles may support only a
subset of these component types, as defined by the individual Java EE profile
specification.

The per-technology requirementsin this chapter apply to any Java EE product
that includes the technology. Note that even though a Java EE profile might not
require support for a particular technology, a Java EE product based on that Java
EE profile might nonetheless includes support for the technology. In such a case,
the requirements for that technology described in this chapter would apply.

133

134

EE.6.1.1 Java Compatible APIs

The containers provide al application components with at |east the Java Platform,
Standard Edition, v6 (Java SE) APIs. Containers may provide newer versions of the
Java SE platform, provided they meet all the Java EE platform requirements. The
Java SE platform includes the following enterprise technologies:

e JavalDL
« JDBC
 RMI-IIOP
« IJNDI

o JAXP

o« StAX

+ JAAS

o IMX

o JAX-WS
 JAXB

* JAF

o SAAJ

» Common Annotations

In particular, the appl et execution environment must be Java SE 6 compatible.
Since typical browsers don't yet provide such support, Java EE products may
make use of the Java Plugin to provide the required applet execution environment.
Use of the Java Plugin is not required, but is one method of meeting the
requirement to provide a Java SE 6 compatible applet execution environment.
This specification adds no requirements to the applet container beyond those
specified by Java SE.

Some of the enterprise technologies that are included in Java SE 6 are also
available independently of the Java SE platform, and this specification requires
newer versions of some of these technologies, as described in the following
section.

The specifications for the Java SE APIs are available at http://
java.sun.com/javase/6/docs/.

Final Release

REQUIREDAPIS

EE.6.1.2 Required Java Technologies

The full Java EE platform also provides a number of Javatechnologiesin each of
the containers defined by this specification. Table EE.6-1 indicates the technol ogies
with their required versions, which containersinclude the technol ogies, and whether
the technology is required (REQ), proposed optional (POPT), or optional (OPT).
Each Java EE profile specification will include asimilar table describing which

135

136

technologies are required for the profile. Note that some technologies are marked

TableEE.6-1 Java EE Technologies

Java Technology App Client Web EJB Status

EJB 3.1 Y2 Y Y REQ, POPT®
Servlet 3.0 N Y N REQ

JSP 2.2 N Y N REQ

EL 2.2 N Y N REQ
JMS11 Y Y Y REQ

JTJA 11 N Y Y REQ
JavaMail 1.4 Y Y Y REQ
Connector 1.6 N Y Y REQ

Web Services 1.3 Y Y Y REQ
JAX-RPC 1.1 Y Y Y REQ, POPT
JAX-WS 2.2 Y Y Y REQ
JAX-RS1.1 N Y N REQ

JAXB 2.2 Y Y Y REQ

JAXR 1.0 Y Y Y REQ, POPT
Java EE Management 1.1 Y Y Y REQ
JavaEE Deployment 1.2° N N N REQ, POPT
JACC14 N Y Y REQ
JASPIC 1.0 N Y Y REQ

JSP Debugging 1.0 N Y N REQ

JSTL 1.2 N Y N REQ

Web Services Metadata 2.1 Y Y Y REQ

JSF 2.0 N Y N REQ
Common Annotations1.1 Y Y Y REQ

Fina Release

REQUIREDAPIS

TableEE.6-1 Java EE Technologies

Java Technology App Client Web EJB Status
Java Persistence 2.0 Y Y Y REQ
Bean Validation 1.0 Y Y Y REQ
Managed Beans 1.0 Y Y Y REQ
Interceptors 1.1 Y Y Y REQ
Contexts and Dependency Y Y Y REQ
Injection for Java EE1.0

Dependency Injectionfor Y Y Y REQ

Java 1.0

a Client APIsonly.
b. Entity beans only.
C. See section EE.6.18 on page 158 for details.

Proposed Optional, as described in the next section.

All classes and interfaces required by the specifications for the APIs must be
provided by the Java EE containers indicated above. In some cases, a Java EE
product is not required to provide objects that implement interfaces intended to be
implemented by an application server, nevertheless, the definitions of such
interfaces must be included in the Java EE platform.

EE.6.1.3 Pruned Java Technologies

Asthe Java EE specification has evolved, some of the technologies originally
included in Java EE are no longer as relevant as they were when they were
introduced to the platform. The Java EE expert group follows a process first defined
by the Java SE expert group (http://blogs.sun.com/mr/entry/
removing_features) to prune technologies from the platform in a careful and
orderly way that minimizesthe impact to devel opers using these technologies, while
allowing the platform to grow even stronger. In short, the process defines two steps.

1. TheUmbrella Expert Group (UEG) for release N of the platform decidesto
propose that a particul ar feature be removed. The specification for that release
documents the proposal.

2. The UEG for release N+1 decides whether to remove the feature from that

137

138

release, retain it as arequired component, or leave it in the "proposed
removal" state for the next UEG to decide.

The result of successfully applying this policy to afeatureis not the actual
deletion of the feature but rather the conversion of the feature from arequired
component of the platform into an optional component. No actual removal from
the specification occurs, athough the feature may be removed from products at
the choice of the product vendor.

Technologies that may be pruned in a future release are marked Proposed
Optional in Table EE.6-1. Technologies that have been pruned are marked
Optional in Table EE.6-1. There are no Optional technologies for Java EE 6.

EE.6.2 Java Platform, Standard Edition (Java SE)
Requirements

EE.6.2.1 Programming Restrictions

The Java EE programming model divides responsibilities between Application
Component Providers and Java EE Product Providers: Application Component
Providers focus on writing business logic and the Java EE Product Providers focus
on providing a managed system infrastructure in which the application components
can be deployed.

This division leads to arestriction on the functionality that application
components can contain. If application components contain the same functionality
provided by Java EE system infrastructure, there are clashes and mis-management
of the functionality.

For example, if enterprise beans were allowed to manage threads, the Java EE
platform could not manage the life cycle of the enterprise beans, and it could not
properly manage transactions.

Since we do not want to subset the Java SE platform, and we want Java EE
Product Providersto be able to use Java SE products without modification in the
Java EE platform, we use the Java SE security permissions mechanism to express
the programming restrictions imposed on Application Component Providers.

In this section, we specify the Java SE security permissions that the Java EE
Product Provider must provide for each application component type. We call
these permissions the Java EE security permissions set. The Java EE security

Final Release

JAVA PLATFORM, STANDARD EDITION (JAVA SE) REQUIREMENTS

permissions set is arequired part of the Java EE API contract. Portable
applications will rely on only the set of permissions specified here.

EE.6.2.2 The Java EE Security Permissions Set

The Java EE security permissions set defines the minimum set of permissions that
application components can expect. All Java EE products must be capable of
deploying application components that require the set of permissions described
here. The Product Provider must ensure that the application components do not use
functions that conflict with the Java EE security permission set.

The exact set of security permissions for application componentsin use at a
particular installation is a matter of policy outside the scope of this specification.
A Java EE product may allow applications to run with no security manager at all,
or with a security manager that enforces any set of security permissions, as
required by the enterprise environment. All Java EE products must be capabl e of
running applications with at least the set of permissions described here. Some
Java EE products will alow the set of permissions available to a component to be
configurable, providing some components with more or fewer permissions than
those described here. A future version of this specification will allow these
security reguirements to be specified in the deployment descriptor for application
components. At the present time, application components that need permissions
not in this minimal set should describe their requirements in their documentation.
Note that it may not be possible to deploy applications that require more than this
minimal set on some Java EE products.

The Java SE security permissions are fully described in http://
java.sun.com/javase/6/docs/technotes/guides/security/permissions.html.

EE.6.2.3 Listing of the Java EE Security Permissions Set

Table EE.6-2 lists the Java EE security permissions set. Thisisthetypical set of
permissions that components of each type should expect to have.

Table EE.6-2 Java EE Security Permissions Set

Security Permissions Target Action

Application Clients

java.awt.AWTPermission accessClipboard

139

140

Table EE.6-2 Java EE Security Permissions Set

Security Permissions Target Action
java.awt.AWTPermission accessEventQueue
java.awt.AWTPermission showWindowWithout
WarningBanner
java.lang.RuntimePermission exitVM
java.lang.RuntimePermission loadLibrary
java.lang.RuntimePermission queuePrintJob
java.net.SocketPermission * connect
java.net.SocketPermission localhost:1024- accept,listen
java.io.FilePermission * read,write
java.util.PropertyPermission * read
Applet Clients
java.net.SocketPermission codebase connect
java.util.PropertyPermission limited read
Web Components and EJB Components
java.lang.RuntimePermission loadLibrary
java.lang.RuntimePermission queuePrintJob
java.net.SocketPermission * connect
java.io.FilePermission * read,write
java.util.PropertyPermission * read

Note that an operating system that hosts a Java EE product may impose
additional security restrictions of its own that must be taken into account. For
instance, the user identity under which a component executesis not likely to have

permission to read and write all files.

Fina Release

JAVA PLATFORM, STANDARD EDITION (JAVA SE) REQUIREMENTS

EE.6.2.4 Additional Requirements

EE.6.24.1 Networking

The Java SE platform includes a pluggable mechanism for supporting multiple URL
protocols through the java.net.URLStreamHandler class and the
java.net.URLStreamHandlerFactory interface.

Thefollowing URL protocols must be supported:

e file: Only reading from afile URL need be supported. That is, the corre-
sponding URLConnection Object’s getOutputStream method may fail with an
UnknownServiceException. File accessis restricted according to the permis-
sions described above.

* http: Version 1.1 of the HTTP protocol must be supported An http URL
must support both input and output.

 https: SSL version 3.0 and TLSversion 1.0 must be supported by https URL
objects. Both input and output must be supported.

The Java SE platform also includes a mechanism for converting a URL'’s byte
stream to an appropriate object, using the java.net.ContentHandler classand
java.net.ContentHandlerFactory interface. A ContentHandler object can
convert aMIME byte stream to an object. ContentHandler objects are typically
accessed indirectly using the getContent method of URL and URLConnection.

When accessing data of the following MIME types using the getContent
method, objects of the corresponding Java type listed in Table EE.6-3 must be
returned.

Table EE.6-3 Java Type of Objects Returned When Using the
getContent Method

MIME Type Java Type

image/qgif java.awt.Image
image/jpeg java.awt.Image
image/png java.awt.Image

Many environments will use HT TP proxies rather than connecting directly to
HTTP servers. If HTTP proxies are being used in the local environment, the
HTTP support in the Java SE platform should be configured to use the proxy

141

142

appropriately. Application components must not be required to configure proxy
support in order to usean http URL.

Most enterprise environments will include afirewall that limits access from
the internal network (intranet) to the public Internet, and vice versa. It istypical
for access using the HTTP protocol to pass through such firewalls, perhaps by
using proxy servers. It is not typical that general TCP/IP traffic, including RMI-
JRMP, and RMI-I1OP, can pass through firewalls.

These considerations have implications on the use of various protocols to
communicate between application components. This specification requires that
HTTP access through firewalls be possible where local policy allows. Some Java
EE products may provide support for tunneling other communication through
firewalls, but thisis neither specified nor required.

EE.6.24.2 JDBC™ API

The JDBC API, which is part of the Java SE platform, alows for accessto awide
range of data storage systems. The Java SE platform, however, does not require that
asystem meeting the Java Compatible™ quality standards provide adatabasethat is
accessible through the JIDBC API.

To alow for the development of portable applications, the Java EE
specification does require that such a database be available and accessible from a
Java EE product through the JDBC API. Such a database must be accessible from
web components, enterprise beans, and application clients, but need not be
accessible from applets. In addition, the driver for the database must meet the
JDBC Compatible requirements in the JDBC specification.

Java EE applications should not attempt to load JDBC drivers directly.
Instead, they should use the technique recommended in the JDBC specification
and perform aJNDI lookup to locate abataSource object. The INDI name of the
DataSource object should be chosen as described in Section EE.5.7, “Resource
Manager Connection Factory References.” The Java EE platform must be able to
supply abataSource that does not require the application to supply any
authentication information when obtaining a database connection. Of course,
applications may also supply a user name and password when connecting to the
database.

When aJDBC API connection is used in an enterprise bean, the transaction
characteristics will typically be controlled by the container. The component
should not attempt to change the transaction characteristics of the connection,
commit the transaction, roll back the transaction, or set autocommit mode.

Final Release

JAVA PLATFORM, STANDARD EDITION (JAVA SE) REQUIREMENTS 143

Attempts to make changes that are incompatible with the current transaction
context may result in a SQLException being thrown. The EJB specification
contains the precise rules for enterprise beans.

Note that the same restrictions apply when a component creates a transaction
using the JTA UserTransaction interface. The component should not attempt the
operations listed above on the JDBC Connection object that would conflict with
the transaction context.

Drivers supporting the JIDBC API in a Java EE environment must meet the
JDBC 4.0 API Compliance requirements as specified in Section 6.4, Java EE
JDBC Compliance, of the IDBC 4.0 specification.

The JDBC API includes APIs for connection naming via JINDI, connection
pooling, and distributed transaction support. The connection pooling and
distributed transaction features are intended for use by JDBC driversto coordinate
with an application server. Java EE products are not required to support the
application server facilities described by these APIs, although they may prove
useful.

The Connector architecture defines an SPI that essentially extends the
functionality of the JIDBC SPI with additional security functionality, and afull
packaging and deployment functionality for resource adapters. A Java EE product
that supports the Connector architecture must support deploying and using a
JDBC driver that has been written and packaged as a resource adapter using the
Connector architecture.

The JDBC 4.0 specificationis available at http://java.sun.com/products/
jdbc/downToad.html.

EE.6.2.4.3 Java | DL

The requirementsin this section only apply to Java EE products that support
interoperability using CORBA.

JavaIDL allows applications to access any CORBA object, written in any
language, using the standard 11OP protocol. The Java EE security restrictions
typically prevent al application component types except application clients from
creating and exporting a CORBA object, but all Java EE application component
types can be clients of CORBA objects.

A Java EE product must support Java IDL as defined by chapters 1 - 8, 13,
and 15 of the CORBA 2.3.1 specification, available at http://www.omg.org/cgi-
bin/doc?formal/99-10-07, and the IDL To Java Language Mapping
Specification, available at http://www.omg.org/cgi-bin/doc?ptc/2000-01-08.

144

The I1OP protocol supports the ability to multiplex calls over asingle
connection. All Java EE products must support requests from clients that
multiplex calls on a connection to either Java IDL server objects or RMI-I10OP
server objects (such as enterprise beans). The server must allow replies to be sent
in any order, to avoid deadlocks where one call would be blocked waiting for
another call to complete. Java EE clients are not required to multiplex calls,
although such support is highly recommended.

A Java EE product must provide support for a CORBA Portable Object
Adapter (POA) to support portable stub, skeleton, and tie classes. A JavaEE
application that defines or uses CORBA objects other than enterprise beans must
include such portable stub, skeleton, and tie classes in the application package.

Java EE applications need to use an instance of org.omg.CORBA.ORB t0
perform many Java IDL and RMI-110P operations. The default ORB returned by
acal tooRB.init(new String[0], nul1) must be usable for such purposes; an
application need not be aware of the implementation classes used for the ORB and
RMI-110OP support.

In addition, for performance reasonsiit is often advantageous to share an ORB
instance among componentsin an application. To support such usage, all web,
enterprise bean, and application client containers are required to provide an ORB
instance in the INDI namespace under the name java: comp/ORB. The container is
allowed, but not required, to share this instance between components. The
container may also use this ORB instance itself. To support isolation between
applications, an ORB instance should not be shared between componentsin
different applications. To alow this ORB instance to be safely shared between
components, portable components must restrict their usage of certain ORB APIs
and functionality:

» Do not call the ORB shutdown method.

» Donot call theorg.omg.CORBA_2_3.0RB Methods register_value_factory
and unregister_value_factory with an id used by the container.

A Java EE product must provide a COSNaming service to support the EJB
interoperability requirements. It must be possible to access this COSNaming
service using the Java IDL COSNaming APIs. Applications with appropriate
privileges must be able to lookup objectsin the COSNaming service.
COSNaming is defined in the Interoperable Naming Service specification,
avalable at http://www.omg.org/cgi-bin/doc?formal/2000-06-19.

Final Release

JAVA PLATFORM, STANDARD EDITION (JAVA SE) REQUIREMENTS

EE.6.24.4 RMI-JRMP

JRMP is the Java technol ogy-specific Remote Method Invocation (RMI) protocol.
The Java EE security restrictions typically prevent all application component types
except application clients from creating and exporting an RM1 object, but al Java
EE application component types can be clients of RMI objects.

EE.6.2.4.5 RMI-110OP

The requirementsin this section only apply to Java EE products that include an EJB
container and support interoperability using RMI-11OP.

RMI-110OP alows objects defined using RMI style interfaces to be accessed
using the 11OP protocol. It must be possible to make any remote enterprise bean
accessible via RMI-11OP. Some Java EE products will simply make all remote
enterprise beans aways (and only) accessible viaRMI-110P; other products might
control this via an administrative or deployment action. These and other
approaches are alowed, provided that any remote enterprise bean (or by
extension, all remote enterprise beans) can be made accessible using RMI-110P.

All components accessing remote enterprise beans must use the narrow
method of the javax.rmi.PortableRemoteObject class, as described in the EJB
specification. Because remote enterprise beans may be deployed using other RMI
protocols, portable applications must not depend on the characteristics of RMI-
I1OP objects (for example, the use of the stub and T1ie base classes) beyond what
is specified in the EJB specification.

The Java EE security restrictions typically prevent al application component
types, except application clients, from creating and exporting an RMI-110P
object. All Java EE application component types can be clients of RMI-110P
objects. Java EE applications should also use INDI to lookup non-EJB RMI-I10P
objects. The INDI names used for such non-EJB RMI-110P objects should be
configured at deployment time using the standard environment entries mechanism
(see Section EE.5.2, “INDI Naming Context”). The application should fetch a
name from JNDI using an environment entry, and use the name to lookup the
RMI-110P object. Typically such names will be configured to be namesin the
COSNaming name service.

This specification does not provide a portable way for applications to bind
objects to names in a name service. Some products may support use of JINDI and
COSNaming for binding objects, but thisis not required. Portable Java EE
application clients can create non-EJB RMI-110P server objects for use as
callback objects, or to passin callsto other RMI-110P objects.

145

146

Note that while RMI-110P doesn’t specify how to propagate the current
security context or transaction context, the EJB interoperability specification does
define such context propagation. This specification only requires that the
propagation of context information as defined in the EJB specification be
supported in the use of RMI-110OP to access enterprise beans. The propagation of
context information is not required in the uses of RMI-110P to access objects
other than enterprise beans.

The RMI-I10OP specification describes how portable Stub and Tie classes can
be created. To be portable to all implementations that use a CORBA Portable
Object Adapter (POA), the Tie classes must extend the
org.omg.PortableServer.Servant class. Thisistypically done by using the -poa
option to the rmic command. A Java EE product must provide support for these
portable stub and Tie classes, typically using the required CORBA POA.
However, for portability to systems that do not use a POA to implement RMI -
[1OP, applications should not depend on the fact that the Tie extends the Servant
class. A Java EE application that defines or uses RMI-110P objects other than
enterprise beans must include such portable Stub and Tie classesin the
application package. Stub and Tie objects for enterprise beans, however, must not
be included with the application: they will be generated, if needed, by the Java EE
product at deployment time or at run time.

RMI-110P is defined by chapters 5, 6, 13, 15, and section 10.6.2 of the
CORBA 2.3.1 specification, available at http://www.omg.org/cgi-bin/
doc?formal/99-10-07, and by the Java™ Language To IDL Mapping
Foecification, available at http://www.omg.org/cgi-bin/doc?ptc/2000-01-06.

EE.6.2.4.6 JNDI

A Java EE product that supports the following types of objects must be able to make
them available in the application’s INDI namespace: EJBHome Objects,
EJBLocalHome Objects, JTA UserTransaction objects, JDBC APl DataSource
objects, IMS ConnectionFactory and Destination objects, JavaMail Session
objects, URL objects, resource manager ConnectionFactory objects (as specified in
the Connector specification), ORB objects, EntityManager objects, and other Java
language objects asdescribed in Chapter EE.5, “ Resources, Naming, and I njection.”
The JNDI implementation in a Java EE product must be capable of supporting all of
these usesin a single application component using asingle JINDI InitialContext.
Application components will generally create aJNDI InitialContext using the

Final Release

JAVA PLATFORM, STANDARD EDITION (JAVA SE) REQUIREMENTS

default constructor with no arguments. The application component may then
perform lookups on that InitialContext to find objects as specified above.

The names used to perform lookups for Java EE objects are application
dependent. The application component’s deployment descriptor is used to list the
names and types of objects expected. The Deployer configures the JINDI
namespace to make appropriate components available. The INDI names used to
lookup such objects must be in the INDI java: hamespace. See Chapter EE.5,
“Resources, Naming, and Injection” for details.

Two particular names are defined by this specification for the cases when the
Java EE product includes the corresponding technology. For all application
components that have access to the JTA UserTransaction interface, the
appropriate UserTransaction object can be found using the name java: comp/
UserTransaction. In al containers except the applet container, application
components may lookup a CORBA 0RB instance using the name java: comp/ORB.

The name used to lookup a particular Java EE object may be different in
different application components. In general, INDI names can not be
meaningfully passed as arguments in remote calls from one application
component to another remote component (for example, in acall to an enterprise
bean).

The JNDI java: namespace is commonly implemented as symbolic linksto
other naming systems. Different underlying naming services may be used to store
different kinds of objects, or even different instances of objects. It isup to a Java
EE product to provide the necessary JNDI service providers for accessing the
various objects defined in this specification.

This specification requires that the Java EE platform provide the ability to
perform lookup operations as described above. Different INDI service providers
may provide different capabilities, for instance, some service providers may
provide only read-only access to the datain the name service.

A Java EE product may be required to provide a COSNaming name serviceto
meet the EJB interoperability requirements. In such a case, a COSNaming JNDI
service provider must be available through the web, EJB, and application client
containers. It will also typicaly be available in the appl et container, but thisis not
required.

A COSNaming JNDI service provider isapart of the Java SE 6 SDK and JRE
from Sun, but is not arequired component of the Java SE specification. The
COSNaming JNDI service provider specification is available at http://
java.sun.com/javase/6/docs/technotes/guides/jndi/jndi-cos.html.

147

148

See Chapter EE.5, “Resources, Naming, and Injection” for the complete
naming reguirements for the Java EE platform. The INDI specification is
available at http://java.sun.com/products/jndi/docs.html.

EE.6.2.4.7 Context Class Loader

This specification requires that Java EE containers provide a per thread context class
loader for the use of system or library classesin dynamically loading classes
provided by the application. The EJB specification requiresthat all EJB client
containers provide a per thread context class loader for dynamically loading system
value classes. The per thread context class |oader is accessed using the Thread
method getContextClasslLoader.

The classes used by an application will typically be loaded by a hierarchy of
classloaders. There may be atop level application class|oader, an extension class
loader, and so on, down to a system class loader. Thetop level application class
loader delegates to the lower class |oaders as needed. Classes |oaded by lower
class loaders, such as portable EJB system value classes, need to be able to
discover the top level application class loader used to dynamically load
application classes.

This specification requires that containers provide a per thread context class
loader that can be used to load top level application classes as described above.
See Section EE.8.2.5, “Dynamic Class Loading” for recommendations for
libraries that dynamically load classes.

EE.6.2.4.8 Java™ Authentication and Authorization Service (JAAS)
Requirements

All EJB containers and al web containers must support the use of the JAAS APIsas

specified in the Connector specification. All application client containers must

support use of the JAAS APIs as specified in Chapter EE.10, “Application Clients”
The JAAS specification isavailable at http://java.sun.com/products/jaas.

EE.6.24.9 Logging APl Requirements

The Logging API provides classes and interfacesin the java.util.logging
package that are the Java™ 2 platform’s core logging facilities. This specification
does not require any additional support for logging. A Java EE application typically
will not have the LoggingPermission necessary to control the logging
configuration, but may usethe logging API to produce log records. A future version

Final Release

ENTERPRISE JAVABEANS™ (EJB) 3.1 REQUIREMENTS

of this specification may require that the Java EE containers use the logging API to
log certain events.

EE.6.24.10 Preferences APl Regquirements

The Preferences APl inthe java.util.prefs package alows applications to store
and retrieve user and system preference and configuration data. A Java EE
application typically will not have the RuntimePermission("preferences™)
necessary to use the Preferences API. This specification does not define any
relationship between the principal used by a Java EE application and the user
preferences tree defined by the Preferences API. A future version of this
specification may define the use of the Preferences API by Java EE applications.

EE.6.3 Enterprise JavaBeans™ (EJB) 3.1 Requirements

This specification requires that a Java EE product provide support for enterprise
beans as specified in the EJB specification. The EIJB specification is available at
http://java.sun.com/products/ejb/docs.html.

This specification does not impose any additional requirements at thistime.
Note that the EJB specification includes the specification of the EIB
interoperability protocol based on RMI-110OP. All containers that support EJB
clients must be capable of using the EJB interoperability protocol to invoke
enterprise beans. All EJB containers must support the invocation of enterprise
beans using the EJB interoperability protocol. A Java EE product may also
support other protocols for the invocation of enterprise beans.

A Java EE product may support multiple object systems (for example, RMI-
I1OP and RMI-JRMP). It may not always be possible to pass object references
from one object system to objects in another object system. However, when an
enterprise bean is using the RMI-110OP protocal, it must be possible to pass object
referencesfor RMI-110P or Java DL objects as arguments to methods on such an
enterprise bean, and to return such object references as return values of a method
on such an enterprise bean. In addition, it must be possible to pass areference to
an RMI-110P-based enterprise bean’s Home or Remote interface to a method on
an RMI-110P or Java IDL object, or to return such an enterprise bean object
reference as areturn value from such an RMI-110OP or Java IDL object.

In aJava EE product that includes both an EJB container and aweb container,
both containers are required to support access to local enterprise beans. No

149

150

support is provided for accessto local enterprise beans from the application client
container or the applet container.

EE.6.4 Servlet 3.0 Requirements

The servlet specification defines the packaging and deployment of web applications,
whether standal one or as part of a Java EE application. The servlet specification also
addresses security, both standal one and within the Java EE platform. These optional
components of the servlet specification are requirements of the Java EE platform.

The servlet specification includes additional requirements for web containers
that are part of a Java EE product and a Java EE product must meet these
requirements as well.

The servlet specification defines distributable web applications. To support
Java EE applications that are distributable, this specification adds the following
requirements.

Web containers must support Java EE distributable web applications placing
objects of any of the following types (when supported by the Java EE product)
into a javax.servlet.http.HttpSession Object using the setAttribute Of
putValue methods:

* java.io.Serializable

- javax.ejb.EJBObject

- javax.ejb.EJBHome

- javax.ejb.EJBLocalObject

- javax.ejb.EJBLocalHome

- javax.transaction.UserTransaction

* ajavax.naming.Context Object for the java:comp/env context
» areference to an EJB local or remote business interface

Web containers may support objects of other types aswell. Web containers
must throw ajava.lang.I11egalArgumentException if an object that isnot one of
the above types, or another type supported by the container, is passed to the
setAttribute Of putValue methods of an HttpSession object corresponding to a
Java EE distributable session. This exception indicates to the programmer that the
web container does not support moving the object between VMs. A web container
that supports multi-VM operation must ensure that, when a session is moved from

Final Release

JAVASERVER PAGES™ (JSP) 2.2 REQUIREMENTS

one VM to another, al objects of supported types are accurately recreated on the
target VM.

The servlet specification defines access to local enterprise beans as an
optional feature. This specification requiresthat all Java EE products that include
both aweb container and an EJB container provide support for access to local
enterprise beans from the web container.

The servlet specification is available at http://java.sun.com/products/
serviet.

EE.6.5 JavaServer Pages™ (JSP) 2.2 Requirements

The JSP specification depends on and builds on the serviet framework. A Java EE
product must support the entire JSP specification.
The JSP specification isavailable at http://java.sun.com/products/jsp.

EE.6.6 Expression Language (EL) 2.2 Requirements

The Expression Language specification was formerly a part of the JavaServer Pages
specification. It was split off into its own specification so that it could be used
independently of JavaServer Pages. A Java EE product must support the Expression
Language.

The Expression Language specification isavailable at http://jcp.org/en/
jsr/detail?id=245.

EE.6.7 Java™ M essage Service (JMS) 1.1 Requirements

A Java Message Service provider must be included in a Java EE product. The IM S
implementation must provide support for both IM S point-to-point and publish/
subscribe messaging, and thus must make those facilities available using the
ConnectionFactory and Destination APIs.

The IM S specification defines several interfaces intended for integration with
an application server. A Java EE product need not provide objects that implement
these interfaces, and portable Java EE applications must not use the following
interfaces:

151

152

* javax.jms.ServerSession

- javax.jms.ServerSessionPool
- javax.jms.ConnectionConsumer

e al javax.jms XA interfaces

The following methods may only be used by application components
executing in the application client container:

* javax.jms.Session method setMessagelistener

* javax.jms.Session method getMessagelistener

* javax.jms.Session method run

* javax.jms.QueueConnection method createConnectionConsumer
* javax.jms.TopicConnection method createConnectionConsumer
* javax.jms.TopicConnection method createDurableConnectionConsumer
* javax.jms.MessageConsumer method getMessagelistener

* javax.jms.MessageConsumer method setMessagelistener

* javax.jms.Connection method setExceptionListener

* javax.jms.Connection method stop

* javax.jms.Connection method setClientID

A Java EE container may throw a JMSException (if alowed by the method) if
the application component violates these restrictions.

Application components in the web and EJB containers must not attempt to
create more than one active (not closed) Session object per connection. An
attempt to use the Connection Object’s createSession method when an active
Session object exists for that connection should be prohibited by the container.
The container may throw a JMSException if the application component violates
thisrestriction. Application client containers must support the creation of multiple
sessions for each connection.

In general, the behavior of aJJM S provider should be the same in both the EJB
container and the web container. The EJB specification describes restrictions on
the use of IMSin an EJB container, as well asthe interaction of IM S with
transactions in an EJB container. Applications running in the web container
should follow the same restrictions.

The IM S specification is available at http://java.sun.com/products/jms.

Final Release

JAVA™ TRANSACTION API (JTA) 1.1 REQUIREMENTS

EE.6.8 Java™ Transaction API (JTA) 1.1 Requirements

JTA definesthe UserTransaction interface that is used by applicationsto start, and
commit or abort transactions. Application components get aUserTransaction
object through a INDI lookup using the name java: comp/UserTransaction Of by
requesting injection of aUserTransaction object.

JTA aso definesthe TransactionSynchronizationRegistry interface that
can be used by system level components such as persistence managers to interact
with the transaction manager. These components get a
TransactionSynchronizationRegistry object through a JINDI lookup using the
name java:comp/TransactionSynchronizationRegistry Or by requesting
injection of aTransactionSynchronizationRegistry object.

A number of interfaces defined by JTA are used by an application server to
communicate with atransaction manager, and for a transaction manager to
interact with aresource manager. These interfaces must be supported as described
in the Connector specification. In addition, support for other transaction facilities
may be provided transparently to the application by a Java EE product.

The JTA specification isavailable at http://java.sun.com/products/jta.

EE.6.9 JavaMail™ 1.4 Requirements

The JavaMail API alowsfor accessto email messages contained in message stores,
and for the creation and sending of email messages using a message transport.
Specific support isincluded for Internet standard MIME messages. Accessto
message stores and transportsis through protocol providers supporting specific store
and transport protocols. The JavaMail APl specification does not require any
specific protocol providers, but the JavaMail reference implementation includes an
IMAP message store provider, a POP3 message store provider, and an SMTP
message transport provider.

Configuration of the JavaMail API istypically done by setting propertiesin a
Properties object that is used to create a javax.mail.Session Object using a
static factory method. To allow the Java EE platform to configure and manage
JavaMail API sessions, an application component that uses the JavaMail AP
should request a Session object using JINDI, and should list its need for aSession
object in its deployment descriptor using a resource-ref element, or by using a
Resource annotation. A JavaMail API Session abject should be considered a
resource factory, as described in Section EE.5.7, “ Resource Manager Connection

153

154

Factory References.” This specification requires that the Java EE platform support
javax.mail.Session objects as resource factories, as described in that section.

The Java EE platform requires that a message transport be provided that is
capable of handling addresses of type javax.mail.internet.InternetAddress
and messages of type javax.mail.internet.MimeMessage. The default message
transport must be properly configured to send such messages using the send
method of the javax.mail.Transport class. Any authentication needed by the
default transport must be handled without need for the application to provide a
javax.mail.Authenticator or to explicitly connect to the transport and supply
authentication information.

This specification does not require that a Java EE product support any
message store protocols.

Note that the JavaMail APl creates threads to deliver notifications of Store,
Folder, and Transport events. The use of these notification facilities may be
limited by the restrictions on the use of threads in various containers. In EJB
containers, for instance, it istypically not possible to create threads.

The JavaMail APl uses the JavaBeans Activation Framework API to support
various MIME data types. The JavaMail APl must include
javax.activation.DataContentHandlers for the following MIME data types,
corresponding to the Java programming language type indicated in Table EE.6-4.

Table EE.6-4 JavaMail APl MIME Data Typeto Java Type

Mappings
Mime Type Java Type
text/plain java.lang.String
text/html java.lang.String
text/xml java.lang.String
multipart/* javax.mail.internet.MimeMultipart
message/rfc822 javax.mail.internet.MimeMessage

The JavaMail API specification isavailable at http://java.sun.com/
products/javamail.

Final Release

JAVA EE™ CONNECTOR ARCHITECTURE 1.6 REQUIREMENTS 155

EE.6.10 Java EE™ Connector Architecture 1.6
Requirements

In full Java EE products, al EJB containers and all web containers must support the
full set of Connector APIs. All such containers must support Resource Adaptersthat
use any of the specified transaction capabilities. The Java EE deployment tools must
support deployment of Resource Adapters, as defined in the Connector
specification, and must support the deployment of applications that use Resource
Adapters.

The Connector specification isavailable at http://java.sun.com/j2ee/
connector/.

EE.6.11 Web Servicesfor Java EE 1.3 Requirements

The Web Services for Java EE specification defines the capabilities a Java EE

application server must support for deployment of web service endpoints. A

compl ete deployment model is defined, including several new deployment

descriptors. All Java EE products must support the deployment and execution of

web services as specified by the Web Services for Java EE specification (JSR-109).
The Web Services for Java EE specification isavailable at http://jcp.org/

en/jsr/detail?id=109.

EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1
Requirements (Proposed Optional)

The JAX-RPC specification defines client APIs for accessing web services aswell
as techniques for implementing web service endpoints. The Web Services for Java
EE specification describes the deployment of JAX-RPC-based services and clients.
The EJB and servlet specifications al so describe aspects of such deployment. It must
be possible to deploy JAX-RPC-based applications using any of these deployment
models.

The JAX-RPC specification describes the support for message handlers that
can process message reguests and responses. In general, these message handlers
execute in the same container and with the same privileges and execution context
as the JAX-RPC client or endpoint component with which they are associated.
These message handlers have access to the same JNDI java: comp/env hamespace

156

astheir associated component. Custom serializers and deserializers, if supported,
are treated in the same way as message handlers.

Note that neither web service annotations nor injection is supported for JAX-
RPC service endpoints and handlers. New applications are encouraged to use
JAX-WS to take advantage of these new facilities that make it easier to write web
services.

The JAX-RPC specification isavailable at http://java.sun.com/

webservices/jaxrpc.

EE.6.13 Java™ API for XML Web Services (JAX-WYS) 2.2
Requirements

The JAX-WS specification provides support for web services that use the JAXB
API for binding XML data to Java objects. The JAX-WS specification defines client
APIsfor accessing web services aswell astechniquesfor implementing web service
endpoints. The Web Services for Java EE specification describes the deployment of
JAX-WS-based services and clients. The EJB and servlet specifications aso
describe aspects of such deployment. It must be possible to deploy JAX-WS-based
applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that
can process message requests and responses. In general, these message handlers
execute in the same container and with the same privileges and execution context
as the JAX-WS client or endpoint component with which they are associated.
These message handlers have access to the same JNDI java: comp/env namespace
astheir associated component. Custom serializers and deserializers, if supported,
are treated in the same way as message handlers.

The JAX-WS specification isavailable at http://java.sun.com/

webservices/jaxws.

EE.6.14 Java™ API for RESTful Web Services(JAX-RS) 1.1
Requirements

JAX-RS defines APIsfor the development of Web services built according to the
Representational State Transfer (REST) architectura style.

In afull Java EE product, all Java EE web containers are required to support
applications that use JAX-RS technology.

Final Release

JAVA™ ARCHITECTURE FOR XML BINDING (JAXB) 2.2 REQUIREMENTS

The specification describes the deployment of services asa Servlet. It must be
possible to deploy JAX-RS-based applications using this deployment model with
the serviet-class element of the web.xml descriptor naming the application-
supplied extension of the JAX-RS App1licationConfig abstract class.

The specification defines a set of optional container-managed facilities and
resources that are intended to be available in a Java EE container - all such
features and resources must be made available.

The JAX-RS specification can be found at http://jcp.org/en/jsr/
detail?id=311.

EE.6.15 Java™ Architecturefor XML Binding (JAXB) 2.2
Requirements

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind
an XML schemato a representation in Javalanguage programs. JAXB can be used
independently or in combination with JAX-WS, where it provides a standard data
binding for web service messages. In afull Java EE product, al Java EE application
client containers, web containers, and EJB containers are required to support the
JAXB API.

The Java API for XML Data Binding specification can be found at http://

java.sun.com/webservices/jaxb.

EE.6.16 Java™ API for XML Registries (JAXR) 1.0
Requirements (Proposed Optional)

The JAXR specification defines APIs for client access to XML -based registries
such asebXML registries and UDDI registries. Java EE products that support JAXR
must include a JAXR registry provider that meets at least the JAXR level O
reguirements.

The JAXR specification isavailable at http://java.sun.com/xm1/jaxr.

157

158

EE.6.17 Java™ Platform, Enterprise Edition Management
API 1.1 Requirements

The Java EE Management API provides APIs for management toolsto query aJava
EE application server to determine its current status, applications deployed, and so
on. All Java EE products must support this APl as described in its specification.

The Java EE Management API specification isavailable at http://jcp.org/
jsr/detail/77.jsp.

EE.6.18 Java™ Platform, Enterprise Edition Deployment
API 1.2 Requirements (Proposed Optional)

The Java EE Deployment API defines the interfaces between the runtime
environment of a deployment tool and plug-in components provided by a Java EE
application server. These plug-in components execute in the deployment tool and
implement the Java EE product-specific deployment mechanisms. All Java EE
products are required to supply these plug-in components for usein tools from other
vendors.

Note that the Java EE Deployment specification does not define new APIsfor
direct use by Java EE applications. However, it would be possible to create a Java
EE application that acts as a deployment tool and provides the runtime
environment required by the Java EE Deployment specification.

The Java EE Deployment API specification is available at http://
java.sun.com/j2ee/tools/deployment.

EE.6.19 Java™ Authorization Service Provider Contract for
Containers (JACC) 1.4 Requirements

The JACC specification defines a contract between a Java EE application server and
an authorization policy provider. In afull Java EE product, al Java EE application
containers, web containers, and enterprise bean containers are required to support
this contract.

The JACC specification can be found at http://jcp.org/jsr/detail/
115.7jsp.

Final Release

JAVA™ AUTHENTICATION SERVICE PROVIDER INTERFACE FOR CONTAINERS (JASPIC) 1.0

EE.6.20 Java™ Authentication Service Provider Interface
for Containers (JASPIC) 1.0 Requirements

The JASPIC specification defines a service provider interface (SPI) by which
authentication providers implementing message authentication mechanisms may be
integrated in client or server message processing containers or runtimes.
Authentication providersintegrated through this interface operate on network
messages provided to them by their calling container. They transform outgoing
messages such that the source of the message may be authenticated by the receiving
container, and the recipient of the message may be authenticated by the message
sender. They authenticate incoming messages and return to their calling container
the identity established as aresult of the message authentication.

In afull Java EE product, all Java EE application containers, web containers,
and enterprise bean containers are required to support the baseline compatibility
requirements as defined by the JASPIC specification. In afull Java EE product, al
web containers must also support the Servlet Container Profile as defined in the
JASPIC specification.

The JASPIC specification can befound at http://jcp.org/jsr/detail/
196.jsp.

EE.6.21 Debugging Support for Other Languages (JSR-45)
Requirements

JSP pages are usually trangdlated into Java language pages and then compiled to
create class files. The Debugging Support for Other Languages specification
describes information that can be included in aclassfile to relate class file data to
datain the original sourcefile. All Java EE products are required to be able to
include such information in class files that are generated from JSP pages.

The Debugging Support for Other Languages specification can be found at
http://jcp.org/en/jsr/detail?id=45.

EE.6.22 Standard Tag Library for JavaServer Pages™
(JSTL) 1.2 Requirements

JSTL defines astandard tag library that makesit easier to develop JSP pages. All
Java EE products are required to provide JSTL for use by all JSP pages.

159

160

The Standard Tag Library for JavaServer Pages specification can be found at
http://jcp.org/en/jsr/detail?id=52.

EE.6.23 Web Services M etadata for the Java™ Platform 2.1
Requirements

The Web Services Metadata for the Java Platform specification defines Java
language annotations that can be used to simplify the development of web services.
These annotations can be used with JAX-WS web service components.

The Web Services Metadata for the Java Platform specification can be found
al http://jcp.org/en/jsr/detail?id=181.

EE.6.24 JavaServer Faces™ 2.0 Requirements

JavaServer Faces technology simplifies building user interfaces for JavaServer
applications. Developers of various skill levels can quickly build web applications
by: assembling reusable Ul componentsin a page; connecting these components to
an application data source; and wiring client-generated events to server-side event
handlers. In afull Java EE product, all Java EE web containers are required to
support applications that use the JavaServer Faces technology.

The JavaServer Faces specification can be found at http://jcp.org/en/jsr/
detail?id=252.

EE.6.25 Common Annotationsfor the Java™ Platform 1.1
Requirements

The Common Annotations specification defines Javalanguage annotations that are
used by severa other specifications, including this specification. The specifications
that use these annotations fully define the requirements for these annotations. The
applet container need not support any of these annotations. All other containers
must provide definitionsfor all of these annotations, and must support the semantics

Final Release

JAVA™ PERSISTENCE APl 2.0 REQUIREMENTS

of these annotations as described in the corresponding specifications and
summarized in the following table.

Table EE.6-5 Common Annotations Support by Container

Annotation App Client Web EJB
Resource Y Y
Resources Y Y Y
PostConstruct Y Y Y
PreDestroy Y Y Y
Generated N N N
RunAs N Y Y
DeclareRoles N Y Y
RolesAlTlowed N Y Y
PermitAll N Y Y
DenyAl1l N Y Y

The Common Annotations for the Java Platform specification can be found at
http://jcp.org/en/jsr/detail?id=250.

EE.6.26 Java™ Persistence APl 2.0 Requirements

Java Persistence is the standard API for the management of persistence and object/
relational mapping. The Java Persistence specification provides an object/relational
mapping facility for application developers using a Java domain model to manage a
relational database. Java Persistence is required to be supported in JavaEE. It can
also be used in Java SE environments.

As mandated by the Java Persistence specification, in a Java EE environment
the classes of the persistence unit should not be loaded by the application class
loader or any of its parent class loaders until after the entity manager factory for
the persistence unit has been created.

The Java Persistence specification was developed by the EJB expert group
and can befound at http://jcp.org/en/jsr/detail?id=220.

161

162

EE.6.27 Bean Validation 1.0 Requirements

The Bean Validation specification defines a metadata model and API for JavaBean
validation. The default metadata source is annotations, with the ability to override
and extend the metadata through the use of XML validation descriptors.

The Java EE platform requires that web containers make an instance of
ValidatorFactory available to JSF implementations by storing it in a servlet
context attribute named
javax.faces.validator.beanValidator.ValidatorFactory.

The Java EE platform also requires that an instance of validatorFactory be
made available to JPA providers as a property in the map that is passed as the
second argument to the
createContainerEntityManagerFactory(PersistenceUnitInfo, Map) method of
the PersistenceProvider interface, under the name
javax.persistence.validation.factory.

The Bean Validation specification can be found at http://jcp.org/en/jsr/
detail?id=303.

EE.6.28 Managed Beans 1.0 Requirements

The Managed Beans specification defines a lightweight component model that
supportsthe basic lifecycle model, resource injection facility and interceptor service
present in the Java EE platform.

The Managed Beans specification can be found at http://jcp.org/en/jsr/
detail?id=316.

EE.6.29 I nter ceptors 1.1 Requirements

The Interceptors specification makes more generally available the interceptor
facility originaly defined as part of the EJB 3.0 specification.

The Interceptors specification can be found at http://jcp.org/en/jsr/
detail?id=318.

Final Release

CONTEXTSAND DEPENDENCY INJECTION FOR THE JAVA EE PLATFORM 1.0 REQUIREMENTS

EE.6.30 Contextsand Dependency I njection for the Java EE
Platform 1.0 Requirements

CDI (JSR-299) defines a set of contextual services, provided by Java EE containers,
aimed at smplifying the creation of applications that use both web tier and business
tier technologies.

The CDI specification can be found at http://jcp.org/en/jsr/
detail?id=299.

EE.6.31 Dependency Injection for Java 1.0 Requirements

Dependency Injection for Java (JSR-330) defines a standard set of annotations (and
one interface) for use on injectable classes.

In the Java EE platform, support for Dependency Injection is mediated by
CDI. More specificaly, DI injection points are only active in bean archives, as
specified in CDI. See Section EE.5.20, “ Support for Dependency Injection (JSR-
330)“ for more details.

The DI specification can be found at http://jcp.org/en/jsr/
detail?id=330.

163

164

Final Release

cuneren EEL T

| nteroperabil ityl

T his chapter describes the interoperability requirements for the Java™ Platform,
Enterprise Edition (Java EE).

EE.7.1 Introduction to I nteroper ability

The JavaEE platform will be used by enterprise environmentsthat support clients of
many different types. The enterprise environments will add new servicesto existing
Enterprise Information Systems (EISs). They will be using various hardware
platforms and applications written in various languages.

In particular, the Java EE platform in enterprise environments may be used in
enterprise environments to bring together any of the following kinds of
applications:

* applications written in such languages as C++ and Visual Basic.
* applications running on a personal computer platform, or Unix® workstation.

» standal one Java technology-based applications that are not directly supported
by the Java EE platform.

It isthe interoperability requirements of the Java EE platform, set out in this
chapter, that make it possible for it to provide indirect support for various types of
clients, different hardware platforms, and a multitude of software applications.
The interoperability features of the Java EE platform permit the underlying
disparate systems to work together seamlessly, while hiding much of the
complexity required to join these pieces together.

165

166

The interoperability requirements for the current Java EE platform release
alow:

 Java EE applicationsto connect to legacy systems using CORBA or low-level
socket interfaces.

 Java EE applicationsto connect to other Java EE applications across multiple
Java EE products, whether from different Product Providers or from the same
Provider, and multiple Java EE platforms.

In this version of the specification, interoperability between Java EE
applications running in different platforms is accomplished through the HTTP
protocol, possibly using SSL, or the EJB interoperability protocol based on [10OP.

EE.7.2 I nter oper ability Protocols

This specification requiresthat a Java EE product support a standard set of protocols
and formats to ensure interoperability between Java EE applications and with other
applications that also implement these protocols and formats. The specification
requires support for the following groups of protocols and formats:

* Internet and web protocols
* OMG protocols
 Javatechnology protocols
» Dataformats

Most of these protocols and formats are supported by Java SE and by the
underlying operating system.
EE.7.2.1 Internet and Web Protocols

Standards based I nternet protocol s are the means by which different pieces of the
platform communicate. The Java EE platform typically supports the following
Internet protocols, as described in the corresponding technology specifications:

Final Release

INTEROPERABILITYPROTOCOLS 167

» TCP/IP protocol family—This s the core component of Internet communica
tion. TCP/IP and UDP/IP are the standard transport protocols for the Internet.
TCP/IPis supported by Java SE and the underlying operating system.

* HTTP1.1—Thisisthe core protocol of web communication. Aswith TCP/IP,
HTTP 1.1 is supported by Java SE and the underlying operating system. A
Java EE web container must be capable of advertising its HTTP services on
the standard HTTP port, port 80.

e SSL 3.0, TLS1.0—SSL 3.0 (Secure Socket Layer) represents the security
layer for Web communication. It is available indirectly when using the https
URL as opposed to the http URL. A Java EE web container must be capable
of advertising its HTTPS service on the standard HTTPS port, port 443. SSL
3.0and TLS 1.0 are also required as part of the EJB interoperability protocol
in the EJB specification.

« SOAP 1.1—SOAP isapresentation layer protocol for the exchange of XML
messages. Support for SOAP layered on HTTP isrequired, as described in the
JAX-RPC and JAX-WS specifications.

* SOAP 1.2—S0AP 1.2 isthe version of the SOAP protocol standardized
through W3C and supported by JAX-WS.

» WS Basic Profile 1.1—The WS- Basic Profile, in combination with the Sim-
ple SOAP Binding Profile and Attachment Profile, describes interoperability
requirements for the use of SOAP 1.1, WSDL 1.1, and MIME-based SOAP
with Attachments. It is required by the JAX-RPC and JAX-WS specifications.

EE.7.2.2 OMG Protocols

This specification requires the afull Java EE product to support the following
Object Management Group (OMG) based protocols:

 11OP (Internet Inter-ORB Protocol)—Supported by JavalDL and RMI-11OPin
Java SE. Java|DL provides standards-based interoperability and connectivity
through the Common Object Request Broker Architecture (CORBA). CORBA
specifies the Object Request Broker (ORB) which allows applications to com-
municate with each other regardless of location. This interoperability is deliv-
ered through I1OP, and is typically found in an intranet setting. 11OP can be
used as an RMI protocol using the RMI-110P technology. I1OP is defined in

168

Chapters 13 and 15 of the CORBA 2.3.1 specification, available at http://
cgi.omg.org/cgi-bin/doc?formal/99-10-07.

» EJB interoperability protocol—The EJB interoperability protocol is based on
[1OP (GIOP 1.2) and the CSIv2 CORBA Secure Interoperability specifica-
tion. The EJB interoperability protocol is defined in the EJB specification.

* CORBA Interoperable Naming Service protocol—The COSNaming-based
INS protocol isan [1OP-based protocol for accessing aname service. The EIJB
interoperability protocol requiresthe use of the INS protocol for lookup of EJB
objectsusing the INDI API. In addition, it must be possibleto usethe Javal DL
COSNaming API to access the INS name service. All Java EE products must
provide a name service that meets the requirements of the Interoperable Nam-
ing Service specification, available at http://cgi.omg.org/cgi-bin/
doc?formal/2000-06-19. This name service may be provided as a separate
name server or asaprotocol bridge or gateway to another name service. Either
approach is consistent with this specification.

EE.7.2.3 Java Technology Protocols

This specification requires the Java EE platform to support the JRMP protocol,
which is the Java technol ogy-specific Remote Method Invocation (RMI) protocol.
JRMP isarequired component of Java SE and is one of two required RMI
protocols. (I1OPisthe other required RMI protocol, see above.)

JRMPisadistributed object model for the Java programming language.
Distributed systems, running in different address spaces and often on different
hosts, must be able to communicate with each other. JRMP permits program-level
objectsin different address spaces to invoke remote objects using the semantics of
the Java programming language object model.

Complete information on the JRMP specification can be found at http://
java.sun.com/javase/6/docs/technotes/guides/rmi.

EE.7.2.4 Data Formats

In addition to the protocols that allow communication between components, this
specification requires Java EE platform support for anumber of dataformats. These
formats provide the definition for data exchanged between components.

The following data formats must be supported:

Final Release

INTEROPERABILITYPROTOCOLS

XML 1.0—The XML format can be used to construct documents, RPC mes-
sages, etc. The JAXP API provides support for processing XML format data.
The JAX-RPC API provides support for XML RPC messages, aswell asa
mapping between Java classes and XML.

HTML 3.2—This represents the minimum web browser standard document
format. While not directly supported by Java EE APIs, Java EE web clients
must be able to display HTML 3.2 documents.

Image file formats—The Java EE platform must support GIF, JPEG, and
PNG images. Support for these formatsis provided by the java.awt.image
APIs (seethe URL: http://java.sun.com/javase/6/docs/api/java/awt/
image/package-summary.htm1) and by Java EE web clients.

JAR files—JAR (Java Archive) files are the standard packaging format for
Java technol ogy-based application components, including the gjb-jar special-
ized format, the Web application archive (WAR) format, the Resource Adapt-
er archive (RAR), and the Java EE enterprise application archive (EAR)
format. JAR is a platform-independent file format that permits many files to
be aggregated into onefile. This allows multiple Java components to be bun-
dled into one JAR file and downloaded to a browser in asingle HT TP transac-
tion. JAR file formats are supported by the java.util.jar and
java.util.zip packages. For complete information on the JAR specification,
Seehttp://java.sun.com/javase/6/docs/technotes/guides/jar.

Classfile format—The class file format is specified in the Java Virtual Ma-
chine specification. Each class file contains one Java programming language
type—either aclassor aninterface—and consists of astream of 8-hit bytes. For
complete information on the class file format, see http://java.sun.com/
docs/books/jvms/index.html.

169

170

Final Release

cureren EE.8

Application Assembly and
Deployment

T his chapter specifies Java™ Platform, Enterprise Edition (Java EE) requirements
for assembling, packaging, and deploying a Java EE application. The main goal of
these requirements is to provide scalable and modular application assembly, and
portable deployment of Java EE applicationsinto any Java EE product.

Java EE applications are composed of one or more Java EE components and
an optional Java EE application deployment descriptor. The deployment
descriptor, if present, lists the application’s components as modules. If the
deployment descriptor is not present, the application’s modul es are discovered
using default naming rules. A Java EE module represents the basic unit of
composition of a Java EE application. Java EE modules consist of one or more
Java EE components and an optional module level deployment descriptor. The
flexibility and extensibility of the Java EE component model facilitates the
packaging and deployment of Java EE components as individual components,
component libraries, or Java EE applications.

A full Java EE product must support all the facilities described in this chapter.
A Java EE profile may support only a subset of the Java EE module types. Any
reguirements related to a modul e type not supported by a product based on a
particular Java EE profile should be understood to not apply to such a product.

Figure EE.8-1 shows the composition model for Java EE deployment units
and includes the optional use of aternate deployment descriptors by the
application package to preserve any digital signatures of the original Java EE
modules.

171

172

Components JavaEE Java EE Application

-

Modules

EJB
module

Web app
module

Deployment
Tool

application
client

module

Resource
Adapter
module

add/delete ingredients

deploy standalone modules

Figure EE.8-1 Java EE Deployment

EE.8.1 Application Development Life Cycle

The development life cycle of a Java EE application begins with the creation of
discrete Java EE components. These components may then be packaged with a
module level deployment descriptor to create a Java EE module. Java EE modules
can be deployed as stand-al one units or can be assembled with a Java EE application
deployment descriptor and deployed as a Java EE application.

Figure EE.8-2 shows the life cycle of a Java EE application.

Final Release

APPLICATION DEVELOPMENT LIFECYCLE

Creation Assembly Deployment

Assembled and

Created by
Component Java EE Modufe Augmented by Java EE App | Processed by
Application Deployer

Provider Assembler
Hdeploy

Java EE Container/Server

Enterprise
Components

Figure EE.8-2 Java EE Application Life Cycle

EE.8.1.1 Component Creation

The EJB, servlet, application client, and Connector specificationsinclude the XML
Schema definition of the associated module level deployment descriptors and
component packaging architecture required to produce Java EE modules. (The
application client specification is found in Chapter EE.10 of this document.)

A Java EE module is a collection of one or more Java EE components of the
same component type (web, EJB, application client, or Connector) with an
optional module deployment descriptor of that type. Any number of components
of the same container type can be packaged together with a single Java EE
deployment descriptor appropriate to that container type to produce a Java EE
module. Components of different container types may not be mixed in asingle
Java EE module.

» A Java EE module represents the basic unit of composition of a Java EE appli-
cation. In some cases a single Java EE module (not necessarily packaged into
aJava EE application package) will contain an entire application. In other cas-
es an application will be composed of multiple Java EE modules.

» The deployment descriptor for a Java EE module contains declarative data re-
quired to deploy the components in the module. The deployment descriptor

173

174

for a Java EE module also contains assembly instructions that describe how
the components are composed into an application.

 Starting with version 5 of the Java EE platform, aweb application module, an
enterprise bean module, or an application client module need not contain a de-
ployment descriptor. Instead, the deployment information may be specified
by annotations present in the class files of the module.

« Starting with version 5 of the Java EE platform, a Java EE enterprise applica-
tion archive need not contain a deployment descriptor. Instead, the deploy-
ment information may be determined using default naming rules for
embedded modules.

» Anindividual Java EE module can be deployed as a stand-alone Java EE
module without an application level deployment descriptor and represents a
valid Java EE application.

 Java EE modules may express dependencieson libraries as described below in
Section EE.8.2, “Library Support.”

All Java EE modules have aname. The name can be explicitly set in the
deployment descriptor for the module. 1f not set, the name of the moduleisthe
pathname of the module in the ear file with any filename extension (jar, .war,
.rar) removed, but with any directory namesincluded. The name of a module
must be unique within an application. If and only if the nameis not unique (e.g.,
because two names are identical after removing different filename extensions) the
deployment tool may choose new unigue names for any of the conflicting
modules; module names that do not conflict must not be changed. The algorithm
for choosing unigue namesin such a case is product specific. Applications that
depend on the names of their modules must ensure that their module names are
unique.

For example, an application with this structure:

myapp.ear
inventory.jar
ui.war

has a default application name of "myapp", and defines two modules with
default names "inventory" and "ui".
An application with this structure;

bigapp.ear

Final Release

APPLICATION DEVELOPMENT LIFECYCLE

ejbs
inventory.jar
accounts.jar
ui
store.war
admin.war

has a default application name of "bigapp", and defines four modules with

default names "gjbs/inventory", "ejbs/accounts”, "ui/store", and "ui/admin".

EE.8.1.2 Application Assembly

A Java EE application may consist of one or more Java EE modules and one Java
EE application deployment descriptor. A Java EE application is packaged using the
Java Archive (JAR) fileformat into afilewith a . ear (Enterprise ARchive)
filename extension. A minima Java EE application package will only contain Java
EE modules and the application deployment descriptor. A Java EE application
package may also include libraries referenced by Java EE modules (using the
Class-Path mechanism described below in Section EE.8.2, “Library Support”),
help files, and documentation to aid the deployer.

The deployment of a portable Java EE application should not depend on any
entities that may be contained in the package other than those defined by this
specification. Deployment of a portable Java EE application must be possible
using only the application deployment descriptor and the Java EE modules (and
their dependent libraries) and descriptorslisted init.

The Java EE application deployment descriptor represents the top level view
of aJava EE application’'s contents. The Java EE application deployment
descriptor is specified by an XML schema or document type definition (see
Section EE.8.6, “Java EE Application XML Schema”).

In certain cases, a Java EE application will need customization before it can
be deployed into the enterprise. New Java EE modules may be added to the
application. Existing modules may be removed from the application. Some Java
EE modules may need custom content created, changed, or replaced. For example,
an application consumer may need to use an HTML editor to add company
graphics to atemplate login page that was provided with a Java EE web
application.

All Java EE applications have aname. The name can be explicitly set in the
application deployment descriptor. If not set, the name of the application isthe
base name of the ear file with any . ear extension removed and with any directory

175

176

names removed. The name of an application must be unique in an application
server instance. If an attempt is made to deploy an application with a name that
conflicts with an already deployed application, the deployment tool may choose a
new unique name for the application. The deployment tool may also allow a
different name to be specified at deployment time. A deployment tool may use
product-specific means to decide whether adepl oyment operation is a deployment
of anew application, in which case the name must be unique, or a redeployment
of an existing application, in which case the name may match the existing
application.

Similarly, when a stand-alone module is deployed, the module name is used
as the application name, and obeys the same rules as described above for
application names. The module name can be explicitly set in the module
deployment descriptor. If not set, the name of the module is the base name of the
modulefile with any extension (.war, .jar, .rar) removed and with any directory
names removed.

EE.8.1.3 Deployment

During the deployment phase of an application’slife cycle, the applicationis
installed on the Java EE platform and then is configured and integrated into the
exigting infrastructure. Each Java EE module listed in the application deployment
descriptor (or discovered using the default rules described below) must be deployed
according to the regquirements of the specification for the respective Java EE module
type. Each module listed must beinstalled in the appropriate container type and the
environment properties of each module must be set appropriately in the target
container to reflect the values declared by the deployment descriptor €lement for
each component.

EE.8.2 Library Support

The Java EE platform provides several mechanisms for applications to use optional
packages and shared libraries (hereafter referred to aslibraries). Libraries may be
bundled with an application or may be installed separately for use by any
application.

Java EE products are required to support the use of bundled and installed
libraries as specified in the Extension Mechanism Architecture and Optional
Package Versioning specifications (available at http://java.sun.com/javase/6/

Final Release

LIBRARY SUPPORT

docs/technotes/guides/extensions) and the JAR File Specification (available at
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.htm1).Lking
this mechanism a Java EE JAR file can reference utility classes or other shared
classes or resources packaged in a separate . jar file or directory that isincluded
in the same Java EE application package, or that has been previoudly installed in
the Java EE containers.

EE.8.2.1 Bundled Libraries

Libraries bundled with an application may be referenced in the following ways:

1. AJARformat file (such asa . jar file, .war file, or . rar file) may referencea
.jar file or directory by naming the referenced . jar file or directory in a
Class-Path header in thereferencing JAR file's Manifest file. The referenced
.jar fileor directory is named using a URL relative to the URL of the refer-
encing JAR file. The Manifest fileisnamed META-INF/MANIFEST.MF inthe JAR
file. The Class-Path entry in the Manifest fileis of the form

Class-Path: Tist-of-jar-files-or-directories-separated-by-spaces

(See the JAR File Specification for important details and limitations of the
syntax of Class-Path headers.) The Java EE deployment tools must process
all such referenced files and directories when processing a Java EE module.
Any deployment descriptorsin referenced . jar files must be ignored when
processing the referencing . jar file. The deployment tool must install the
.jar filesand directoriesin away that preserves the relative references
between thefiles. Typically thisis done by installing the . jar filesinto a
directory hierarchy that matches the original application directory hierarchy.
All referenced . jar files or directories must appear in thelogical class path of
the referencing JAR files at runtime.

Only JAR format files or directories containing class files or resources to be
loaded directly by astandard class loader should be thetarget of aClass-Path
reference; such files are always named with a . jar extension. Top level JAR
files that are processed by a deployment tool should not contain Class-Path
entries; such entries would, by definition, reference other files external to the
deployment unit. A deployment tool is not required to process such external
references.

2. A .ear file may contain adirectory that contains libraries packaged in JAR

177

178

files. The1ibrary-directory element of the . ear file' sdeployment descriptor
containsthe name of thisdirectory. If alibrary-directory element isn’t spec-
ified, or if the . ear file does not contain a deployment descriptor, the directory
named Tib isused. An empty 1ibrary-directory element may be used to
specify that thereis no library directory.

All filesin this directory (but not subdirectories) with a . jar extension must
be made available to all components packaged in the EAR file, including
application clients. These libraries may reference other libraries, either bun-
dled with the application or installed separately, using any of the techniques
described herein.

. A web application may include librariesin theweB-INF/11ib directory. Seethe

Servlet specification for details. These libraries may reference other libraries,
either bundled with the application or installed separately, using any of the
techniques described herein.

EE.8.2.2 Installed Libraries

Libraries that have been installed separately may be referenced in the following
way:

1. JAR format files of al types may contain an Extension-List attributein their

Manifest file, indicating a dependency on an installed library. The JAR File
Foecification defines the semantics of such attributes for use by applets; this
specification requires support for such attributes for all component types and
corresponding JAR format files. The deployment tool isrequired to check such
dependency information and reject the deployment of any component for
which the dependency can not be met. Portabl e applications should not assume
that any installed libraries will be available to a component unless the compo-
nent’s JAR format file, or one of the containing JAR format files, expresses a
dependency on the library using the Extension-List and related attributes.

The referenced libraries must be made available to all components contained
within the referencing file, including any components contained within other
JAR format files within the referencing file. For example, if a .ear filerefer-
ences an installed library, the library must be made available to all compo-
nentsinall .war files, EJB .jar files, application . jar files, and resource
adapter . rar fileswithin the . ear file.

Final Release

LIBRARY SUPPORT 179

A Java EE product is not required to support downloading of libraries (using
the <extension>-Implementation-URL header) at deployment time or runtime. A
Java EE product is also not required to support more than asingle version of an
installed library at once. A Java EE product is not required to limit access to
installed libraries to only those for which the application has expressed a
dependency; the application may be given accessto moreinstalled libraries than it
has requested. In al of these cases, such support is highly recommended and may
be required in afuture version of this specification. In particular, we recommend
that a Java EE product support multiple versions of an installed library, and by
default only allow applicationsto accesstheinstalled libraries for which they have
expressed a dependency.

EE.8.2.3 Library Conflicts

If an application includes abundled version of alibrary, and the same library exists
asaningtalled library, the instance of the library bundled with the application should
be used in preference to any installed version of thelibrary. Thisallows an
application to bundle exactly the version of alibrary it requires without being
influenced by any installed libraries. Note that if the library is also arequired
component of the Java EE platform version on which the application is being
deployed, the platform version may (and typically will) take precedence.

EE.8.24 Library Resources

In addition to allowing access to referenced classes, as described above, any
resources contained in the referenced JAR files must a so be accessible using the
Class and ClassLoader getResource methods, as allowed by the security
permissions of the application. An application will typically have the security
permissions required to access resources in any of the JAR files packaged with the
application.

EE.8.25 Dynamic Class L oading

Librariesthat dynamically load classes must consider the class|oading environment
of aJava EE application. Libraries will often be loaded by a class loader that isa
parent class loader of the class loader that is used to load application classes. A
library that only needs to dynamically load classes provided by the library itself can
safely usethe C1ass method forName. However, libraries that need to dynamically

180

load classes that have been provided as a part of the application need to use the
context class loader to load the classes. Access to the context class loader requires
RuntimePermission(“getClassLoader”), whichisnot normally granted to
applications, but should be granted to librariesthat need to dynamically load classes.
Libraries can use a method such as the following to assert their privilege when
accessing the context class loader. Thistechnique will work in both Java SE and
Java EE.

pubTlic ClassLoader getContextClassLoader() {
return AccessController.doPrivileged(
new PrivilegedAction<ClasslLoader>() {
pubTlic ClassLoader run() {
ClassLoader c1 = null;
try {
cl = Thread.currentThread().
getContextClassLoader();
} catch (SecurityException ex) { }
return cl;
}
b
}

Libraries should then use the following technique to load classes.

ClassLoader c1 = getContextClassLoader();
if (c1 !'= null) {

try {
clazz = Class.forName(name, false, cl1);

} catch (ClassNotFoundException ex) {
clazz = Class.forName(name);

}
} else
clazz = Class.forName(name);

EE.8.2.6 Examples

The following exampleillustrates a simple use of the bundled library mechanism to
reference alibrary of utility classesthat are shared between enterprise beansin two
separate gjb-jar files.

appl.ear:

Final Release

LIBRARY SUPPORT

META-INF/application.xml

ejbl.jar Class-Path: util.jar
ejb2.jar Class-Path: util.jar
util.jar

The next example illustrates a more complex use of the Class-Path
mechanism. In this example the Devel oper has chosen to package the enterprise
bean client view classesin a separate JAR file and reference that JAR file from the
other JAR files that need those classes. Those classes are needed both by
ejb2.jar, packaged in the same application as ejb1.jar, and by ejb3.jar and
serviletl.jar, packaged in adifferent application. Those classes are a so needed
by ejb1.jar itself because they define the remote interface of the enterprise beans
inejbl.jar, and the developer has chosen the by reference model of making these
classes available, as described in the EJB spec. The deployment descriptor for
ejbl.jar namestheclient view JAR fileinthe ejb-client-jar element.

The Class-Path mechanism must be used by componentsin app3.ear to
reference the client view JAR file that corresponds to the enterprise beans
packaged in ejbl.jar of app2.ear. These enterprise beans are referenced by
enterprise beansin ejb3. jar and by the servlets packaged in webapp.war.

app2.ear:
META-INF/application.xml
ejbl.jar Class-Path: ejbl_client.jar

deployment descriptor contains:
<ejb-client-jar>ejbl_client.jar</ejb-client-jar>
ejbl_client.jar
ejb2.jar Class-Path: ejbl_client.jar

app3.ear:
META-INF/application.xml
ejbl_client.jar
ejb3.jar Class-Path: ejbl_client.jar
webapp.war Class-Path: ejbl_client.jar
WEB-INF/web.xm]l
WEB-INF/1ib/servletl. jar

The following example illustrates a simple use of the installed library
mechanism to reference alibrary of utility classes that isinstalled separately.

appl.ear:

181

182

META-INF/application.xml
ejbl.jar:
META-INF/MANIFEST.MF:
Extension-List: util
util-Extension-Name: com/example/util
util-Specification-Version: 1.4
META-INF/ejb-jar.xml

util.jar:
META-INF/MANIFEST.MF:
Extension-Name: com/example/util
Specification-Title: example.com’s util package
Specification-Version: 1.4
Specification-Vendor: example.com
Implementation-Version: build96

EE.8.3 Class L oading Requirements

The Java EE specification purposely does not define the exact types and
arrangements of class loaders that must be used by a Java EE product. Instead, the
specification defines requirementsin terms of what classes must or must not be
visible to components. A Java EE product is free to use whatever classloaders it
chooses to meet these requirements. Portable applications must not depend on the
types of class|oaders used or the hierarchical arrangement of class loaders, if any.
Applications should use the techniques described in Section EE.8.2.5, “Dynamic
Class Loading” if they need to load classes dynamically.

In addition to the required classes specified below, a Java EE product must
provide away to allow an application to access aclass library installed in the
application server, even if it has not expressed a dependency on that library. This
supports the use of old applications and extension libraries that do not use the
defined extension dependency mechanism.

The following sections describe the requirements for each container type. In
all cases, accessto classesis goverened by the rules of the Javalanguage and the
Javavirtual machine. In all cases, access to classes and resources is goverened by
the rules of the Java security model.

EE.8.3.1 Web Container Class L oading Requirements

Components in the web container must have access to the following classes

Final Release

CLASSLOADINGREQUIREMENTS 183

and resources.

e The content of the WEB-INF/classes directory of the containing war file.

e The content of al jar filesin the weB-INF/11ib directory of the containing war
file, but not any subdirectories.

» Thetransitive closure of any libraries referenced by the above jar files (as
specified in Section EE.8.2, “Library Support”).

» Thetransitive closure of any libraries referenced by the war file itself (as
specified in Section EE.8.2, “Library Support”).

» Thetransitive closure of any libraries specified by or referenced by the con-
taining ear file (as specified in Section EE.8.2, “Library Support”).

» The contents of al jar filesincluded in any resource adapter archives (rar
files) included in the same ear file.

» The contents of all jar filesincluded in each resource adapter archive (rar file)
deployed separately to the application server, if that resource adapter is used
to satisfy any resource referencesin the module.

» The contents of al jar filesincluded in each resource adapter archive (rar file)
deployed separately to the application server, if any jar filein that rar fileis
used to satisfy any reference from the modul e using the Extension Mechanism
Architecture (as specified in Section EE.8.2, “Library Support”).

» Thetransitive closure of any libraries referenced by thejar filesin the rar files
above (as specified in Section EE.8.2, “Library Support”).

» Thetransitive closure of any libraries referenced by the rar files themselves
(as specified in Section EE.8.2, “Library Support”).

» The Java EE API classes specified in Table EE.6-1 for the web container.

» All Java SE 6 API classes.

Components in the web container may have access to the following classes
and resources. Portable applications must not depend on having or not having
access to these classes or resources.

» Theclasses and resources accessible to any other web modulesincluded in the
same ear file, as described above.

* The content of any EJB jar filesincluded in the same ear file.

184

» The content of any client jar files specified by the above EJB jar files.

» Thetransitive closure of any libraries referenced by the above EJB jar files
and client jar files (as specified in Section EE.8.2, “Library Support”).

» The contents of any jar filesincluded in any resource adapter archives (rar
files) deployed separately to the application server.

» Thetransitive closure of any libraries referenced by thejar filesin therar files
above (as specified in Section EE.8.2, “Library Support”).

» Thetransitive closure of any libraries referenced by the rar files above them-
selves (as specified in Section EE.8.2, “Library Support”).

» The Java EE API classes specified in Table EE.6-1 for the containers other
than the web container.

» Any installed libraries available in the application server.

» Other classes or resources contained in the application package, and specified
by an explicit use of an extension not defined by this specification.

* Other classes and resources that are part of the implementation of the applica-
tion server.

Components in the web container must not have access to the following
classes and resources, unless such classes or resources are covered by one of the
rules above.

» Other classes or resources in the application package. For example, the appli-
cation should not have access to the classes in application client jar files.

EE.8.3.2 EJB Container Class L oading Requirements

Components in the EJB container must have access to the following classes and
resources.

» The content of the EJB jar file.

» Thetransitive closure of any libraries referenced by the EJB jar file (as speci-
fied in Section EE.8.2, “Library Support™).

» Thetransitive closure of any libraries specified by or referenced by the con-
taining ear file (as specified in Section EE.8.2, “Library Support”).

» The contents of all jar filesincluded in any resource adapter archives (rar
files) included in the same ear file.

Final Release

CLASSLOADINGREQUIREMENTS

» The contents of al jar filesincluded in each resource adapter archive (rar file)
deployed separately to the application server, if that resource adapter is used
to satisfy any resource references in the module.

» The contents of all jar filesincluded in each resource adapter archive (rar file)
deployed separately to the application server, if any jar filein that rar fileis
used to satisfy any reference from the module using the Extension Mechanism
Architecture (as specified in Section EE.8.2, “Library Support”).

» Thetransitive closure of any libraries referenced by thejar filesin therar files
above (as specified in Section EE.8.2, “Library Support”.

» Thetransitive closure of any libraries referenced by the rar files themselves
(as specified in Section EE.8.2, “Library Support”).

e The Java EE API classes specified in Table EE.6-1 for the EJB container.

 All Java SE 6 API classes.

Components in the EJB container may have access to the following classes
and resources. Portable applications must not depend on having or not having
access to these classes or resources.

» The classes and resources accessible to any web modulesincluded in the same
ear file, as described in Section EE.8.3.1, “Web Container Class Loading Re-
quirements’ above.

» The content of any EJB jar filesincluded in the same ear file.

» The content of any client jar files specified by the above EJB jar files.

» Thetransitive closure of any libraries referenced by the above EJB jar files
and client jar files (as specified in Section EE.8.2, “Library Support”).

» The contents of any jar filesincluded in any resource adapter archives (rar
files) deployed separately to the application server.

» Thetransitive closure of any libraries referenced by thejar filesin therar files
above (as specified in Section EE.8.2, “Library Support”).

» Thetransitive closure of any libraries referenced by the rar files above them-
selves (as specified in Section EE.8.2, “Library Support”).

» The JavaEE API classes specified in Table EE.6-1 for the containers other
than the EJB container.

« Any installed libraries avail able in the application server.

185

186

 Other classes or resources contained in the application package, and specified

by an explicit use of an extension not defined by this specification.

* Other classes and resources that are part of the implementation of the applica-

tion server.
Components in the EJB container must not have access to the following

classes and resources, unless such classes or resources are covered by one of the
rules above.

» Other classes or resources in the application package. For example, the appli-

cation should not have access to the classes in application client jar files.

EE.8.3.3 Application Client Container Class L oading Requirements

Components in the application client container must have access to the following
classes and resources.

The content of the application client jar file.

The transitive closure of any libraries referenced by the above jar file (as
specified in Section EE.8.2, “Library Support™).

The transitive closure of any libraries specified by or referenced by the con-
taining ear file (as specified in Section EE.8.2, “Library Support”).

The Java EE API classes specified in Table EE.6-1 for the application client
container.

All Java SE 6 API classes.

Components in the application client container may have accessto the

following classes and resources. Portable applications must not depend on having
or not having access to these classes or resources.

The JavaEE API classes specified in Table EE.6-1 for the containers other than
the application client container.

Any installed libraries available in the application server.

Other classes or resources contained in the application package, and specified
by an explicit use of an extension not defined by this specification.

Other classes and resources that are part of the implementation of the applica-
tion server.

Final Release

APPLICATIONASSEMBLY

Components in the application client container must not have access to the
following classes and resources, unless such classes or resources are covered by
one of the rules above.

* Other classes or resources in the application package. For example, the appli-
cation client should not have accessto the classesin other application client jar
filesin the same ear file, nor should it have access to the classes in web appli-
cationsor gb jar filesin the same ear file.

EE.8.34 Applet Container Class L oading Requirements

The requirements for the applet container are completely specified by the Java SE 6
specification. This specification adds no new requirements for the applet container.

EE.8.4 Application Assembly

This section specifies the sequence of steps that are typically followed when
composing a Java EE application.

EE.8.4.1 Assembling a Java EE Application

1. Select the Java EE modules that will be used by the application.
2. Create an application directory structure.

The directory structure of an application is arbitrary, but by following some
simple conventions a deployment descriptor may not be needed. The structure
should be designed around the regquirements of the contained components.

3. Reconcile Java EE module deployment descriptors.

The deployment descriptors for the Java EE modules must be edited to link
internally satisfied dependencies and eliminate any redundant security role
names. An optional element a1t-dd (described in Section EE.8.6, “ Java EE
Application XML Schema’) may be used when it is desirable to preserve the
original deployment descriptor. The element a1t-dd specifies an alternate
deployment descriptor to use at deployment time. The edited copy of the
deployment descriptor file may be saved in the application directory treeina
location determined by the Application Assembler. If the a1t-dd element is

187

188

not present, the Deployer must read the deployment descriptor directly from
the module package.

a. Choose unique names for the modules contained in the application. If two
modules specify conflicting namesin their deployment descriptors, create
an alternate deployment descriptor for at least one of the modules and
changeitsname. If two modulesin the same directory of the ear file have
the same base name (e.g., foo.jar and foo.war), rename one of the
modules or create an alternate deployment descriptor to specify a unique
name for one of the modules.

b. Link theinternally satisfied dependencies of al componentsin every
modul e contained in the application. For each component dependency,
there must only be one corresponding component that fulfills that
dependency in the scope of the application.

i. For each ejb-11ink, there must be only one matching ejb-name in the
scope of the entire application (see Section EE.5.5, “Enterprise
JavaBeans™ (EJB) References’).

ii. Dependencies that are not linked to internal components must be
handled by the Deployer as external dependencies that must be met by
resources previously installed on the platform. External dependencies
must be linked to the resources on the platform during deployment.

¢. Synchronize security role-names across the application. Rename unique
role-names with redundant meaning to a common name. Rename role-
names with common names but different meanings to unique names.
Descriptions of role-names that are used by many components of the
application can be included in the application-level deployment descriptor.

d. Assign acontext root for each web module included in the Java EE
application. The context root is arelative name in the web namespace for
the application. Each web module must be given a distinct and non-
overlapping namefor its context root. The web modules will be assigned a
complete name in the namespace of the web server at deployment time. If
thereis only one web module in the Java EE application, the context root
may be the empty string. If no deployment descriptor isincluded in the
application package, the context root of the web modulewill be the module
name. See the servlet specification for detailed requirements of context

Final Release

APPLICATIONASSEMBLY 189

root naming.

e. Make sure that each component in the application properly describes any
dependencies it may have on other components in the application. A Java
EE application should not assume that all componentsin the application
will be available on the class path of the application at run time. Each
component might be loaded into a separate class |oader with a separate
namespace. If the classesin a JAR file depend on classes in another JAR
file thefirst JAR file should reference the second JAR fileusing the Class-
Path mechanism. A notableexceptiontothisruleisJAR fileslocated inthe
WEB-INF/14ib directory of aweb application. All such JAR filesare
included in the class path of the web application at runtime; explicit
references to them using the C1ass-Path mechanism are not needed.
Another exception to thisruleis JAR fileslocated in the library directory
(usually named 14b) in the application package. Note that the presence of
component-decl aring annotationsin shared artifacts, such aslibrariesinthe
library directory and libraries referenced by more than one modul e through
Class-Path references, can have unintended and undesirabl e consequences
and is not recommended.

f. There must be only one version of each classin an application. If one
component depends on one version of alibrary, and another component
depends on another version, it may not be possible to deploy an application
containing both components. With the exception of application clients, a
Java EE application should not assume that each component isloaded in a
separate class |loader and has a separate namespace. All componentsin a
single application may beloaded in asingle class|oader and shareasingle
namespace. Note, however, that it must be possible to deploy an
application such that all components of the application are in anamespace
(or namespaces) separate from that of other applications. Typically, this
will be the normal method of deployment. By default, application clients
are each deployed into their own Java virtual machine instance, and thus
each application client has its own class namespace, and the classes from
application clients are not visible in the class namespace of other
components.

4. (Optional) Create an XML deployment descriptor for the application.

The deployment descriptor must be named application.xm1 and must reside
in the top level of the META-INF directory of the application .ear file. The

190

deployment descriptor must be avalid XML document according to the XML
schemafor aJava EE:application XML document. (Alternatively, the
deployment descriptor may meet the requirements of previous versions of
JavaEE.)

Many applications that follow the conventions described below will not need
a deployment descriptor for the application. The deployment tool will deter-
mine the components of the application using some simple rules.

5. Package the application.

a. Place the Java EE modules and the deployment descriptor in the
appropriate directories.

b. Package the application directory hierarchy in afile using the JAR file
format. The file should be named with a . ear filename extension.

EE.8.4.2 Adding and Removing Modules

After the application is created, Java EE modules may be added or removed before
deployment. When adding or removing a modul e the following steps must be
performed:

1. Decide on alocationinthe application package for the new module. Optionally
create new directoriesin the application package hierarchy to contain any Java
EE modulesthat are being added to the application.

2. Ensure that the name of the new module does not conflict with any of the ex-
isting modules, either by choosing an appropriate default filename for the mod-
ule or by explicitly specifying the module name in the modul €’ s deployment
descriptor or in an alternate deployment descriptor.

3. Copy the new Java EE modules to the desired location in the application pack-
age. The packaged modules are inserted directly in the desired location; the
modules are not unpackaged.

4. Edit the deployment descriptors for the Java EE modulesto link the dependen-
cieswhich are internally satisfied by the Java EE modules included in the ap-
plication.

5. Edit the Java EE application deployment descriptor (if included) to meet the
content requirements of the Java EE platform and the validity requirements of
the Java EE:application XML DTD or schema

Final Release

DEPLOYMENT

EE.85 Deployment
The Java EE platform supports three types of deployment units:

» Stand-alone Java EE modules.
» Java EE applications, consisting of one or more Java EE modules.

 Classlibraries packaged as . jar files according to the Extension Mechanism
Architecture. These class libraries then become installed libraries.

Any Java EE product must be able to accept a Java EE application delivered
asa .ear file or astand-alone Java EE module delivered asa . jar, .war, OF .rar
file (as appropriate to its type). If the application is delivered as a . ear, an
enterprise bean module delivered asa . jar file, aweb application delivered asa
.war file, or an application client delivered as a . jar file, the deployment tool
must be able to deploy the application such that the Java classes in the application
are in a separate namespace from classes in other Java applications. Typically this
will require the use of a separate class loader for each application. Standalone
resource adaptersdeliveredin . rar files and standalone classlibraries delivered in
.jar filesthat becomeinstalled libraries will of necessity appear in the class
namespaces of applications that use them, and may appear in the class namespace
of any application depending on the level of isolation supported by the Java EE
product.

In all cases, the deployment of a Java EE application must be complete before
the container delivers requests to any of the application’s components. When an
application is started, the container must deliver requests to enterprise bean
components immediately. Containers must deliver requests to web components
and resource adapters only after initialization of the component has completed.

The Java EE Deployment API describes how a product-independent
deployment tool accepts plugins for a specific Java EE product, and how the tool
and those plugins cooperate to deploy Java EE applications. The requirementsin
this specification that refer to a deployment tool are meant to refer to the
combination of any vendor-provided product-independent deployment tool and
the vendor-specific deployment plugin for this tool, as well as any other vendor-
specific deployment tools provided with the Java EE product.

Typically adeployment tool will copy the deployed application or module to
a product-specific location, along with the configuration settings and
customizations specified by the Deployer. In some cases a deployment tool might
include Application Assembly functionality as well, allowing the Deployer to

191

192

construct, modify, or customize the application before deployment. Still, it must
be possible to deploy a portable Java EE application, module, or library
containing no product-specific deployment information without modifying the
original files or artifacts that the Deployer specified to the deployment tool.

The deployment tools for Java EE containers must validate the deployment
descriptors against the Java EE deployment descriptor schemas or DTDs that
correspond to the deployment descriptors being processed. The appropriate
schemaor DTD is chosen by analyzing the deployment descriptor to determine
which version it claims to conform to. Validation errors must cause an error to be
reported to the Deployer. The deployment tool may allow the Deployer to correct
the error and continue deployment.

Some deployment descriptors are optional. The required deployment
information is determined by using default rules, or by annotations present on
application class files. Some deployment descriptors that are included in an
application may exist in either complete or incomplete forms. A complete
deployment descriptor provides a complete description of the deployment
information; a deployment tool must not examine class files for this deployment
information. An incomplete deployment descriptor provides only a subset of the
required deployment information; a deployment tool must examine the
application classfiles for annotations that specify deployment information. Any
deployment information specified in a deployment descriptor overrides any
deployment information specified in an application’s class files. The Java EE
component specifications, including this specification, describe when deployment
descriptors are optional and which deployment descriptors may exist in either
complete or incomplete forms. The attribute metadata-complete isused in the
deployment descriptor to specify whether the descriptor is complete.

The scope of the metadata-complete attribute isthe descriptor it appearsin.
For historical reasons, the webservices.xm1 deployment descriptor does not have
its own metadata-complete atribute; instead, it defers to the value of the
metadata-complete attribute in the module's deployment descriptor.
Specifications that define their own additional deployment descriptors should
provide ametadata-complete attribute of their own, if deemed useful, with the
appropriate semantics.

EE.851 Deploying a Stand-Alone Java EE Module

This section specifies the requirements for deploying a stand-al one Java EE module.

Final Release

DEPLOYMENT 193

1. Thedeployment tool must first read the Java EE modul e deployment descriptor
if present in the package. See the component specificationsfor the required lo-
cation and name of the deployment descriptor for each component type.

2. If the deployment descriptor is absent, or is present and isa Java EE 5 version
descriptor and the metadata-complete attribute is not set to true, the deploy-
ment tool must examine all the classfilesin the application package. Any an-
notations that specify deployment information must be logically merged with
the information in the deployment descriptor (if present). The correspondence
of annotation information with deployment descriptor information, aswell as
theoverriding rules, are described in thisand other Java EE specifications. The
result of thislogical merge process provides the deployment information used
in subsequent deployment steps. Note that there is no requirement for the
merge processto produce anew deployment descriptor, although that might be
a common implementation technique.

3. When deploying a standal one modul e, the module name is used as the applica-
tion name. The deployment tool must ensure that the application nameis
unique in the application server instance. If the name is not unique, the deploy-
ment tool may automatically choose a unique name or allow the Deployer to
choose a unique name, but must not fail the deployment. This ensures that ex-
isting modules continue to be deployable.

4. The deployment tool must deploy all of the components listed in the Java EE
modul e deployment descriptor, or marked via annotations and discovered as
described in the previous requirement, according to the deployment require-
ments of the respective Java EE component specification. If the moduleisa
type that contains JAR format files (for example, web and Connector mod-
ules), all classesin . jar files within the modul e referenced from other JAR
fileswithin themodul e using the C1ass-Path manifest header must beincluded
in the deployment. If the module, or any JAR format files within the module,
declares a dependency on aninstalled library, that dependency must be satis-
fied.

5. The deployment tool must allow the Deployer to configure the container to
provide the resources and configuration values needed for each component.
The required resources and configuration parameters are specified in the de-
ployment descriptor or via annotations discovered in requirement 2.

6. The deployment tool must allow the Deployer to deploy the same module mul-
tiple times, as multiple independent applications, possibly with different con-
figurations. For example, the enterprise beans in an gjb-jar file might be

194

deployed multiple times under different INDI names and with different config-
urations of their resources.

EE.8.5.2 Deploying a Java EE Application
This section specifies the requirements for deploying a Java EE application.

1. The deployment tool must first read the Java EE application deployment de-
scriptor from the application . ear file (META-INF/application.xml). If the de-
ployment descriptor is present, it fully specifies the modulesincluded in the
application. If no deployment descriptor is present, the deployment tool uses
the following rules to determine the modules included in the application.

a All filesin the application package with afilename extension of .war are
considered web modul es. The context root of theweb moduleisthe module
name (see Section EE.8.1.1, “Component Creation”).

b. All filesin the application package with afilename extension of . rar are
considered resource adapters.

c. A directory named 11b is considered to be the library directory, as
described in Section EE.8.2.1, “Bundled Libraries.”

d. For al filesin the application package with afilename extension of . jar,
but not contained in the 11b directory, do the following:

i. If the JAR file contains aMETA-INF/MANIFEST.MF file with aMain-
Class attribute, or contains aMETA-INF/application-client.xm1 file,
consider the JAR file to be an application client module.

ii. If the JAR file contains aMETA-INF/ejb-jar.xm1 file, or contains any
classwith an EJB component annotation (Stateless, €tc.), consider the
JAR fileto be an EJB module.

iii. All other JAR files are ignored unless referenced by a JAR file
discovered above using one of the JAR file reference mechanisms such
asthe C1ass-Path header in amanifest file.

2. The deployment tool must ensure that the application name is unique in the ap-
plication server instance. If the name is not unique, the deployment tool may
automatically choose aunigue name or alow the Deployer to choose aunique
name, but must not fail the deployment. Thisensuresthat existing applications

Final Release

DEPLOYMENT 195

continue to be deployable.

3. The deployment tool must open each of the Java EE moduleslisted in the Java
EE application deployment descriptor or discovered using the rules above and
read the Java EE modul e deployment descriptor, if present in the package. See
the Enterprise JavaBeans, servlet, Java EE Connector and application client
specificationsfor the required location and name of the deployment descriptor
for each component type. Deployment descriptors are optional for all module
types. (The application client specification is Chapter EE.10, “Application Cli-
ents’.)

4. If the modul e deployment descriptor is absent, or is present and isaJavaEE 5
or later version descriptor and the metadata-complete attributeis not set to
true, the deployment tool must examine al the classfilesin the application
package that can be used by the module (that is, all classfilesthat areincluded
inthe . ear file and can be referenced by the module, such asthe classfilesin-
cluded in the module itself, class files referenced from the module by use of a
Class-Path reference, classfilesincluded in the library directory, etc.). Any
annotations that specify deployment information must be logically merged
with the information in the deployment descriptor (if present). Note that the
presence of component-declaring annotations in shared artifacts, such as li-
brariesin the library directory and libraries referenced by more than one mod-
ule through C1ass-Path references, can have unintended and undesirable
conseguences and is not recommended. The correspondence of annotation in-
formation with deployment descriptor information, as well as the overriding
rules, are described in this and other Java EE specifications. The result of this
|ogical merge process providesthe deployment information used in subsequent
deployment steps. Note that there is no requirement for the merge process to
produce a new deployment descriptor, although that might be acommon im-
plementation technique.

5. The deployment tool must install al of the components described by each
modul e deployment descriptor, or marked via annotations and discovered as
described in the previousrequirement, into the appropriate container according
to the deployment requirements of the respective Java EE component specifi-
cation. All classesin . jar files or directories referenced from other JAR files
using the Class-Path manifest header must be included in the deployment. If
the . ear file, or any JAR format fileswithinthe . ear file, declares adependen-
cy on an installed library, that dependency must be satisfied.

6. The deployment tool must allow the Deployer to configure the container to

196

provide the resources and configuration values needed for each component.
The required resources and configuration parameters are specified in the de-
ployment descriptor or via annotations discovered in requirement 3.

. The deployment tool must allow the Deployer to deploy the same Java EE ap-

plication multiple times, as multiple independent applications, possibly with
different configurations. For example, the enterprise beansin an gjb-jar file
might be deployed multiple times under different INDI names and with differ-
ent configurations of their resources.

. When presenting security role descriptions to the Deployer, the deployment

tool must usethe descriptionsin the JavaEE application depl oyment descriptor
rather than the descriptions in any modul e deployment descriptorsfor security
roles with the same name. However, for security rolesthat appear in amodule
deployment descriptor but do not appear in the application deployment de-
scriptor, the deployment tool must use the description provided in the module
deployment descriptor.

EE.85.3 Deploying a Library
This section specifies the requirements for deploying alibrary.

1. The deployment tool must record the extension name and version information

from the manifest file of the library JAR file. The deployment tool must make
the library available to other Java EE deployment units that request it accord-
ing to the version matching rules described in the Optional Package Version-
ing specification. Note that the library itself may include dependencies on
other libraries and these dependencies must also be satisfied.

. The deployment tool must make the library available with at |east the same se-

curity permissions as any application or module that usesit. The library may
beinstalled with the full security permissions of the container.

. Not all librarieswill be deployable on all Java EE products at al times. Librar-

iesthat conflict with the operation of the Java EE product may not be deploy-
able. For example, an attempt to deploy an older version of alibrary that has
subsequently been included in the Java EE platform specification may be re-
jected. Similarly, deployment of alibrary that is also used in the implementa-
tion of the Java EE product may be rejected. Deployment of alibrary thatisin
active use by an application may be rejected.

Final Release

JAVA EEAPPLICATION XML SCHEMA 197

EE.85.4 Module Initialization

After a successful deployment, all the modules of an application other than
application client modules areinitialized. The specifications for the different
modul e types describe the steps required to initialize amodule. By default, the order
of initiadization of modulesin an application is unspecified. In rare casesit may be
important that modules areinitialized in acertain order, for example, if acomponent
in one modules uses a component in another module during itsinitiaization. An
application can declare that modules must be initialized in the order they'relisted in
the application deployment descriptor by including the <initialize-in-
order>true</initialize-in-order> element in the application deployment
descriptor. If the application deployment descriptor specifies amoduleinitialization
order that conflicts with the initialization order specified by any of the modules (for
example, by the use of the EJB DependsOn annotation), the deployment tool must
report an error. Application client modules are initialized on their own schedule,
typically when an end user invokes them; as such, they are excluded from any
initialization ordering requirements.

EE.8.6 Java EE Application XML Schema

The XML grammar for a Java EE application deployment descriptor is defined by
the Java EE application schema. The root element of the deployment descriptor for a
Jaav EE application isapplication. The granularity of composition for Java EE
application assembly isthe Java EE module. A Java EE application deployment
descriptor contains a name and description for the application and the URI of a Ul
icon for the application, aswell alist of the Java EE modules that comprise the
application. The content of the XML elementsisin general case sensitive. This
means, for example, that <role-name>Manager</role-name> isadifferent role than
<role-name>manager</role-name>.

All valid Java EE application deployment descriptors must conform to the
XML Schema definition, or the DTD or schema definition from a previous
version of this specification. (See Appendix EE.A, “Previous Version Deploy-
ment Descriptors.”) The deployment descriptor must be named META-INF/
application.xml inthe .ear file. Note that this name is case-sensitive.

198

applicati ame?

display-name*

small-icon?

large-icon?

_| initialize-in-order? I

connector | ejb | java | web

module+

description*

—-I security-role* I
_I library-directory? I

env-entry-name

env-entry-type?

injection-target*

injection-target-class
injection-target-name

lookup-name?

: ejb-ref-name |

-

—| ejb-local-ref* :

(see schema for details)

:E]b f- |

-I mapped-name? I
injection-target*

injection-target-class

injection-targ

injection-target*

injection-target-cl

injection-target-name

lookup-name?

es-type?
res-auth?

_| resource-ref* :

res-sharing-scope?
resource-env-ref-name

mapped-name?

—| resource-env-ref* I

injection-target-class

injection-target-name

resource-env-ref-type?

injection-target*

-l description* |

message-destination. ame
message-destination-type?
message-destination-usage?

injection-target-name I

g -ref*

I I g ation-link? |

injection-target*

persistence-unit-ref-name injection-target-class

_| persistence-unit-ref*

persistence-unit-name? | injection-target-name

lookup-name?

injection-target*

description*

injection-target-name I

p -context-ref-name |

_|persistence'conlext—rei‘ I

II -unit-name? I

persistence-context-type?

I—l lifecycle-callback-class? I

—| post-construct* l
pre-destroy*

L|“ ycl llback-method I

lifecycle-callback-class?

lifecycle-callback-method

—| callback-handler? |

display-name+

g iation

Figure EE.8-3

Fina Release

(see schema for details)

message-destination-name

Java EE Application XML Schema Structure

COMMON JAVA EE XML SCHEMA DEFINITIONS

The XML Schemalocated at http://java.sun.com/xml1/ns/javaee/
application_6.xsd definesthe XML grammar for a Java EE application
deployment descriptor.

EE.8.7 Common Java EE XML Schema Definitions

The XML Schemalocated at http://java.sun.com/xm1/ns/javaee/
javaee_6.xsd definestypesthat are used by many other Java EE deployment
descriptor schemas, both in this specification and in other specifications.

199

200

Final Release

cureren EE.9

Profiles

T his chapter describes the requirements common to all Java EE profiles. It does
not define any concrete profiles, delegating this task to separate specifications.
The Java EE Web Profile Specification, published in conjunction with the
present specification, defines the first Java EE profile, the Web Prdfile.
The definition of other profilesisleft to future specifications.

EE.Q.1 I ntroduction

A Java EE profile (from now on, simply “aprofile”) represents a configuration of
the platform suited to a particular class of applications.

A profile may contain a proper subset of the technologies contained in the
platform. By doing so, a profile can effectively drop technologies which the
platform supports but which are not generally useful in a particular domain.

A profile may also add one or more technol ogies which are not present in the
platform itself. For example, a hypothetical Java EE Portal Profile would likely
include the Portlet API (JSR-286).

Additionally, a profile may tag certain technologies as optional. In this case,
products implementing the profile may or may not include the technology in
guestion. Naturally, if they do, they need to obey al the relevant requirements
mandated by the profile specification.

A product may implement two or more Java EE profiles, or the full platform
and one or more Java EE profiles, aslong as their combined requirements do not
giveriseto conflicts.

201

202

EE.Q.2 Profile Definition

A profileis defined in accordance with the rules of the Java Community Process.
Typically, aproposal to create anew profile, or to revise an existing one, will be
submitted as a Java Specification Request (JSR). Once the JSR is approved, an
expert group will be formed and conduct work as dictated by the process. The JSR
for aprofile must mention the version of the Java EE Platform that it builds on.
Additionally, if it builds on an existing profile, it must mention this fact as well.

Although profiles can be created and evolved independently of the Java EE
platform, modulo the rules contained in this specification, it is envisioned that
profiles will maintain a reasonable level of alignment with the platform itself, in
order to avoid fragmenting the development space into progressively
incompatible idands. To this end, a profile must build on the most recent version
of the Java EE platform available at the time the JSR for the profile is approved. It
is al'so recommended that profile expert groups go beyond this regquirement and,
asmuch asit is practical, ensure that their profile builds on the most recent
version of the Java EE platform at the time the profile is finalized.

EE.Q.3 General Rulesfor Profiles

A profile must include all technologies that are required components of the Java EE
platform or of any profiles on which it builds. These technologies will be listed as
required in the profile.

A profile may promote to required status any technologies that are optional
components of the Java EE platform or of any profile on which it builds.

Unless otherwise mandated by a profile, any technologies that are optional
components of the Java EE platform, or of any profile on which the profilein
guestion builds, must be optional components of the profile itself.

A profile may include as arequired or as an optional component any
technology outside of those included in the Java EE platform or any profile on
which it builds, as long as the corresponding compatibility requirements are
satisfied.

A profile must preserve any requirements defined in the Java EE platform
specification, or in the specification of any profile on which it builds, aslong as
the preconditions for those requirements are satisfied. Typically, the preconditions
will involve the presence of one or more technol ogies among those included in the
profile. Unconditional regquirements must be obeyed unconditionally.

Final Release

EXPRESSION OF REQUIREMENTS

A profile may add any requirements that pertain to one or more technologies
whose inclusion it allows or requires. Such requirements must not conflict with
those set by the Java EE platform or by any profile on which the present one
builds.

The specification for individual technologies may allow for certain features of
the technology in question to be optional. In this case, a profile may promote one
or more of these features to required status, assuming the Java EE platform or any
profile on which it builds hasn’'t done so already.

A praofile must not conflict with the specifications for any technologies it
includes either as required or optional components. Therefore, unless the
specification for an individual technology explicitly alows for certain features or
sets of requirements to be optionally implementable, a profile must not itself
attempt to redefine any such features or requirements. For example, a profile may
not allow omitting a package or type or method from an APl specified elsewhere,
unless the specification for that API explicitly allows for this to happen.

Although this specification does not define any APIs, a profile may do so.
Since such an API would be available only in profilesthat build on the one that
definesiit, this approach limits the reusability of the API and thus is discouraged.

EE.94 Expression of Requirements

The present specification uses the following conventions when expressing
reguirements that pertain to one or more technologies included in the platform:
 Chapters or sections which are conditional on the presence of a specific tech-
nology are marked as such at the very beginning. The condition is then intend-
ed to stay in force until the next textual unit at the same logical level (e.g. the
following chapter, or section, €tc.).

* Individual paragraphs and sentences are deemed to be conditional on any
technol ogies they mention, unless otherwise indicated.

* Section or paragraphs which discuss examples, or are otherwise non-norma-
tive, do not contain any requirements.
EE.95 Requirementsfor All Java EE Profiles

The Java Platform, Standard Edition 6 is the required foundation for any Java EE 6
profile.

203

204

The following technologies are required to be present in all Java EE profiles:
» Resource and component lifecycle annotations defined by JSR-250 (@Re-
source, @Resources, @PostConstruct, @PreDestroy)

The following functionality is required to be supported in all Java EE profiles:
* INDI “java’” naming context (see Section EE.5.2, “JNDI Naming Context)

* Java Transaction APl (JTA)

EE.Q.6 Optional Featuresfor Java EE Profiles

All thetechnologieslisted in Section EE.6.1, “Required APIs, and not designated as
required in Section EE.9.5, “Requirements for All Java EE Profiles, are designated
as optional for usein Java EE profiles.
The following functionality is designated as optional for usein Java EE profiles:
* RMI/IIOP interoperability requirements (see Section EE.7.2.2, “OMG Proto-
cols’)

» Support for java: comp/ORB (see Section EE.5.12, “ORB References’)

EE.Q.7 Full Java EE Product Requirements

This section defines the requirements for full Java EE platform products. These
requirements correspond to the full set of requirementsin previous versions of the
Java EE platform specification and update those requirements for this new version
of the platform.

Please note that, due to the effects of the pruning process, future versions of
the Java EE specification will likely relax the requirements given here,
specifically by marking as optional technologies that have been subject to pruning
and that are required by the present specification. The set of technologies that
have been identified as candidates for pruning is givenin Section EE.6.1.3,
“Pruned Java Technologies’.

The following technologies are required:

EJB 3.1
Servlet 3.0
JSP2.2
EL 2.2

Final Release

FULL JAVA EE PRODUCT REQUIREMENTS

MS1.1

JTA 11

JavaMail 1.4

Connector 1.6

Web Services 1.3
JAX-RPC 1.1

JAX-WS 2.2

JAX-RS1.1

JAXB 2.2

JAXR 1.0

Java EE Management 1.1
Java EE Deployment 1.2
JACC 14

JASPIC 1.0

JSP Debugging 1.0

JSTL 1.2

Web Services Metadata 2.1
JSF 2.0

Common Annotations 1.1
Java Persistence 2.0

Bean Validation 1.0
Managed Beans 1.0
Contexts and Dependency Injection for Java EE 1.0
Dependency Injection for Java 1.0

There are no optional technologies.

205

206

Final Release

cureren EE.10

Application Clients

T his chapter describes application clientsin the Java™ Platform, Enterprise
Edition (Java EE).

A full Java EE product must support the application client container as
described in this chapter. A Java EE profile may or may not require support for
the application client container.

EE.10.1 Overview

Application clients are first tier client programs that execute in their own Java™
virtual machines. Application clients follow the model for Java technology-based
applications. they areinvoked at their main method and run until the virtual machine
isterminated. However, like other Java EE application components, application
clients depend on a container to provide system services. The application client
container may be very light-weight compared to other Java EE containers, providing
only the security and deployment services described below

EE.10.2 Security

The Java EE authentication requirements for application clients are the same as for
other Java EE components, and the same authentication techniques may be used as
for other Java EE application components.

No authentication is necessary when accessing unprotected web resources.
When accessing protected web resources, the usual varieties of authentication
may be used, namely HTTP Basic authentication, SSL client authentication, or
HTTP Login Form authentication. Lazy authentication may be used.

207

208

Authentication is required when accessing protected enterprise beans. The
authentication mechanisms for enterprise beans include those required in the EJB
specification for enterprise bean interoperability. Lazy authentication may be
used.

An application client makes use of an authentication service provided by the
application client container for authenticating its users. The container’s service
may be integrated with the native platform’s authentication system, so that a
single signon capability is employed. The container may authenticate the user
when the application is started, or it may use lazy authentication, authenticating
the user when a protected resource is accessed. This specification does not
describe the technique used to authenticate the user, although a later version may
do so.

If the container interacts with the user to gather authentication data, the
container must provide an appropriate user interface. In addition, an application
client may provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section EE.10.7, “ Java EE Application
Client XML Schema” for details). The Deployer may override the callback
handler specified by the application and use the container’s default authentication
user interface instead.

If acalback handler is configured by the Deployer, the application client
container must instantiate an object of this class and useit for all authentication
interactions with the user. The application’s callback handler must fully support
Callback objects specified in the javax.security.auth.callback package.

Note that when HTTP Login Form authentication is used, the authentication
user interface provided by the server (in the form of an HTML page delivered in
response to an HTTP request) must be displayed by the application client.

Application clients typically execute in an environment with a
SecurityManager installed, and have similar security permission requirements as
servlets. The security permission requirements are described fully in
Section EE.6.2, “ Java Platform, Standard Edition (Java SE) Requirements.”

EE.10.3 Transactions

Application clients are not required to have direct access to the transaction facilities
of the Java EE platform. A Java EE product is not required to provide a JTA
UserTransaction object for use by application clients. Application clients can

Final Release

RESOURCES, NAMING, AND INJECTION

invoke enterprise beans that start transactions, and they can use the transaction
facilities of the JIDBC API. If aJDBC API transaction is open when an application
client invokes an enterprise bean, the transaction context is not required to be
propagated to the EJB server.

EE.10.4 Resour ces, Naming, and I njection

Aswith al Java EE components, application clients use JNDI to look up enterprise
beans, get access to resource managers, reference configurable parameters set at
deployment time, and so on. Application clients use the java: JNDI namespace to
access these items (see Chapter EE.5, “ Resources, Naming, and Injection” for
details).

Injection is also supported for the application client main class. Because the
application client container does not create instances of the application client main
class, but merely loads the class and invokes the static main method, injection into
the application client class uses static fields and methods, unlike other Java EE
components. Injection occurs before the main method is called.

EE.10.5 Application Programming I nterfaces

Application clients have all the facilities of the Java™ Platform, Standard Edition
(subject to security restrictions), aswell as various standard extensions, as described
in Chapter EE.6 “Application Programming Interface” Each application client
executesin its own Javavirtual machine. Application clients start execution at the
main method of the class specified in theMain-Class attributein the manifest file of
the application client’s JAR file (although note that application client container code
will typically execute before the application client itself, in order to prepare the
environment of the container, install a SecurityManager, initialize the name service
client library, and so on).

EE.10.6 Packaging and Deployment

Application clients are packaged in JAR format fileswith a . jar extension and may
include a deployment descriptor similar to other Java EE application components.
The deployment descriptor describes the enterprise beans, web services, and other
types of external resources referenced by the application. If the deployment

209

210

descriptor is not included, or isincluded but not marked metadata-complete,
annotations on the main class of the application client may also be used to describe
the resources needed by the application. Aswith other Java EE application
components, access to resources must be configured at deployment time, names
assigned for enterprise beans and resources, and so on.

The following table describes the cases the deployment tool must consider
when deciding whether or not to process annotations on the application client
main class.

Table EE.10-1 Deployment Descriptor Processing Requirements

Deployment descriptor metadata-complete? process annotations?

application-client_1_2 N/A No
application-client_1_3 N/A No
application-client_1_4 N/A No
application-client_5 Yes No
application-client_5 No Yes
none N/A Yes

The tool used to deploy an application client to the client machine, and the
mechanism used to install the application client, is not specified. Very
sophisticated Java EE products may alow the application client to be deployed on
aJava EE server and automatically made available to some set of (usually
intranet) clients. Other Java EE products may require the Java EE application
bundle containing the application client to be manually deployed and installed on
each client machine. And yet another approach would be for the deployment tool
on the Java EE server to produce an installation package that could be used by
each client to install the application client. There are many possibilities here and
this specification doesn’t prescribe any one. It only defines the package format for
the application client and the things that must be possible during the deployment
process.

How an application client isinvoked by an end user is unspecified. Typically
aJava EE Product Provider will provide an application launcher that integrates
with the application client machine's native operating system, but the level of
such integration is unspecified.

Final Release

JAVA EEAPPLICATION CLIENT XML SCHEMA

EE.10.7 Java EE Application Client XML Schema

The XML grammar for a Java EE application client deployment descriptor is
defined by the Java EE application-client schema. The root element of the
deployment descriptor for an application clientiSappl1ication-client. The content
of the XML elementsisin general case sensitive. This means, for example, that
<res-auth>Container</res-auth> must be used, rather than <res-
auth>container</res-auth>.

All valid application-client deployment descriptors must conform to the
XML Schema definition, or to aDTD or schema definition from a previous
version of this specification. (See Appendix EE.A, “Previous Version
Deployment Descriptors.”) The deployment descriptor must be named META-INF/
application-client.xml inthe application client’s . jar file. Note that this name
is case-sensitive.

Figure EE.10-1 shows the structure of the Java EE application-client XML
Schema. The Java EE application-client XML Schemaislocated at http://
java.sun.com/xml/ns/javaee/application-client_6.xsd.

211

212

module-name?
—| description* I

rlsmall—icon? I

display-name+
—| icon* I

env-entry-name

env-entry-value?

mapped-name?

lookup-name?

injection-target*

large-icol

injection-target-class

injection-target-name

description*

—| ejb-ref* I
(see schema for details)

:ejb-vef-name |

-I remote? I

_cescripion |

resource-ref*
res-sharing-scop

lookup-name?

injection-target*

-l mapped-name? I

injection-target*

lookup-name?

injection-target-class

injection-target-cl;

injection-target-name

description*
resource-env-ref-name

: resol ef-type? |

injection-target*

injection-target-class
injection-target-name

lookup-name?

—l message-destination-ref* |} 1 g

vink? |

-I lookup-name’ I

injection-target-class

injection-target-name

description*

persistence-unit-ref-name

_|pers\stence—umirref* !

lifecycle-callback-class?

Iperslslence nit-name? I
mapped-name?

post-construct

lifecycle-callback-method

lifecycle-callback-class?

lifecycle-callback-method

injection-target-class

injection-target*

injection-target-name

—| callback-handler? I

display-name+

—| message-destination* I
(see schema for details)

FigureEE.10-1

Fina Release

message-destination-name

Java EE Application Client XML Schema Structure

cnerer EELLD

Service Provider Interface

T he Java™ Platform, Enterprise Edition (Java EE) includes severa technologies
that are primarily intended to be used to extend the capabilities of the Java EE
containers. In addition, some Java EE technologies include service provider
interfaces along with their application programming interfaces. A Java EE profile
may include some or al of these facilities, as described in Chapter EE.9, “Profiles’.

EE.11.1 Java™ EE Connector Architecture

The Connector API defines how resource adapters are packaged and integrated with
any Java EE product. Many types of service providers can be provided using the
Connector APl and packaging, including JDBC drivers, IMS providers, and JAXR
providers. All Java EE products must support the Connector APIs, as specified in
the Connector specification.

The Connector specification isavailable at http://java.sun.com/j2ee/
connector.

EE.11.2 Java™ Authorization Service Provider Contract for
Containers

The JACC specification defines the contract between a J2EE container and an
authorization policy provider.
The JACC specification isavailable at http://jcp.org/jsr/detail/115.jsp.

213

214

EE.11.3 Java™ Transaction API

The Java Transaction APl definesthe TransactionSynchronizationRegistry class
that isintended for use by system level application server components such as
persistence managers, resource adapters, as well as EJB and Web application
components. This provides the ability to register synchronization objects with
special ordering semantics, associate resource objects with the current transaction,
get the transaction context of the current transaction, get current transaction status,
and mark the current transaction for rollback.

The JTA specification is available at http://java.sun.com/products/jta.

EE.114 Java™ Persistence

Java Persistence providesinterfacesin the javax.persistence.spi package that
allow apersistence provider to be plugged into the Java Persistence framework.

The Java Persistence specification was devel oped by the EJB expert group
and isavailable at http://jcp.org/en/jsr/detail?id=220.

EE.11.5 Java™ API for XML Web Services

JAX-WS providesinterfacesin the javax.xm1.ws.spi package that support
pluggability of JAX-WS implementations.

The JAX-WS specification is available at http://java.sun.com/
webservices/jaxws.

EE.11.6 JavaM ail ™

The JavaMail specification describes how JavaMail protocol providers can be
packaged and distributed so that they can be discovered and used through the
JavaMail API. Thisalowsthe JavaMail API to be extended with support for new
mail protocols and mailbox formats.

The JavaMail specification isavailable at http://java.sun.com/products/
javamail.

Final Release

cureren EE.12

" Compatibility and Migration

T his chapter summarizes compatibility and migration issues for the Java EE
platform. The specifications for each of the component technologiesincluded in
Java EE a so describe compatibility and migration issues for that technology in
much more detail.

EE.12.1 Compatibility

The word compatibility covers many different concepts. Java EE products are
compatible with the Java EE specification if they implement the APIs and behavior
required by the specification. Applications are compatible with arelease of the Java
EE platform if they only depend on APIs and behavior defined by that release of the
platform. A new release of the Java EE platform is compatible with previous
releases of the platform if al portable applications written to the previous release of
the platform will also run unchanged and with identical behavior on the new release
of the platform.

Compatibility is acore value of the Java EE platform. A Java EE product is
required to support portable applications written to previous versions of the
platform. Compatibility and portability work together to provide the Write Once,
Run Anywhere value of the Java EE platform. Java EE products conform to the
Java EE specifications by providing APIs and behavior as required by the
specifications. Portable applications depend only on the APIs and behavior
required by the Java EE specifications. In general, portable applications written to
aprevious version of the platform will continue to work without change and with
identical behavior on the current version of the platform.

215

216

EE.12.1.1 JavaServer Pages

The incorporation of JavaServer Faces and the unification of the expression
language support required a small incompatible change to the syntax of JSP pages.
The character sequence #{ is now reserved and is used to specify deferred
evaluation. JSP pages that use this character sequence in template text will need to
be changed to escape the sequence, e.g., \#{.

JSP pages now support the use of Unicode byte order marks. In the rare case
that a page was using the 1SO-8859-1 characters that correspond to Unicode byte
order marks as the first characters on a page, the page will need to be changed to
display correctly.

See the JSP specification for further details on these incompatibilities.

EE.12.2 Migration

Migration is the act of converting an application to use new facilitiesintroduced in
this release of the platform. Given the strong level of compatibility in this rel ease of
the Java EE platform, migration islargely an optional exercise. Still, an application
may be improved (better performance, simpler to develop, moreflexible, etc.) by
converting it to use newer facilities of the Java EE platform.

EE.12.2.1 JavaServer Faces

JavaServer Faces can make it much easier to develop aweb user interface for an
application. Applications using JavaServer Pages to provide aweb user interface
may want to migrate to JavaServer Faces as a higher level component framework
for building such user interfaces.

Previous versions of the JavaServer Faces and JavaServer Pages
specifications defined APIs for using and controlling the expression language
support in those technol ogies. In this rel ease those APIs have been deprecated and
arereplaced by APIsin the new javax.el package. Applications are strongly
encouraged to migrate to these new APIs. Note that the deprecated APIs continue
to work as they did in previous rel eases.

EE.12.2.2 Java Persistence

Java Persistence provides a much richer set of modeling capabilities and object/
relational mapping capabilities than EJB CMP local entity beans, and is

Final Release

MIGRATION

significantly easier to use. Applications that manage persistent data in a database
should strongly consider the use of Java Persistence in preferenceto either EJB
CMP or the use of JDBC with data access objects.

Support for EIJB CMP 1.1 entity beans has been deprecated in this release.
Applications are strongly encouraged to migrate applications using EJB CMP 1.1
entity beansto Java Persistence. Note that EJB CMP 1.1 entity beans continue to
work in thisrelease.

EE.12.2.3 JAX-WS

JAX-WS, aong with JAXB and the Metadata for Web Services specification,
provides simpler and more complete support for web servicesthan is available using
the JAX-RPC technology. Applications that provide web services using JAX-RPC
should consider migrating to the JAX-WS API. Note that because both technologies
support the same web service interoperability standards, clients and services can be
migrated to the new API independently.

EE.12.2.4 Annotations

A key technology that greatly simplifies development of Java EE applicationsis
Java language annotations. Annotations especialy simplify the use of the Java
Persistence and JAX-WS technologies. By using annotations, many applications
can avoid the need for deployment descriptors, greatly simplifying application
devel opment. Developers should consider the use of annotations instead of
deployment descriptors.

217

218

Final Release

cureren EE.13

Future Directions

T hisversion of the Java™ Platform, Enterprise Edition (Java EE) specification
includes most of the facilities needed by enterprise applications. Still, thereis
always more to be done. This chapter briefly describes our plansfor future versions
of this specification. Please keep in mind that all of thisis subject to change. Your
feedback is encouraged.

The following sections describe additional facilities we would like to include
in future versions of this specification. Many of the APIsincluded in the Java EE
platform will continue to evolve on their own and we will include the latest
version of each API.

EE.13.1 JNLP (Java™ Web Start)

The Java Network Launch Protocol defines amechanism for deploying Java
applications on a server and launching them from aclient. A future version of this
specification may require that Java EE products be able to deploy application clients
in away that alows them to be launched by a INLP client, and that application
client containers be able to launch application clients deployed using the INLP
technology. Java™ Web Start is the reference implementation of a INLP client.

Moreinformation on INLP isavailable at http://jcp.org/en/jsr/
detail?id=056; more information on Java Web Start is available at http://
java.sun.com/products/javawebstart.

219

220

EE.13.2 Java EE SPI

Many of the APIsthat make up the Java EE platform include an SPI layer that
allows service providers or other system level componentsto be plugged in. This
specification does not describe the execution environment for al such service
providers, nor the packaging and deployment requirementsfor all service providers.
However, the Java EE Connector Architecture does define the requirements for
certain types of service providers called resource adapters, and the Java
Authorization Contract for Containers defines requirements for security service
providers. Future versions of this specification will more fully define the Java EE
SPI.

Final Release

cerenons EEA

PreviousVersion Depl oymenf
Descriptors

T his appendix describes Document Type Definitions and XML schemas for
Deployment Descriptors from previous versions of the J2EE specification. All Java
EE products are required to support these DTDs and schemas aswell asthe schemas
specified in thisversion of the specification. This ensuresthat applications written to
previous versions of this specification can be deployed on products supporting the
current version of this specification. In addition, there are no restrictions on mixing
versions of deployment descriptorsin asingle application; any combination of vaid
deployment descriptor versions must be supported.

EE.A.1 Java EE 5 Application XML Schema

The XML grammar for a Java EE application deployment descriptor is defined by
the Java EE application schema. The root element of the deployment descriptor for a
Jaav EE applicationisapplication. The granularity of composition for Java EE
application assembly is the Java EE module. A Java EE application deployment
descriptor contains a name and description for the application and the URI of a Ul
icon for the application, aswell alist of the Java EE modules that comprise the
application. The content of the XML elementsisin general case sensitive. This
means, for example, that <role-name>Manager</role-name> isadifferent role than
<role-name>manager</role-name>.

A valid Java EE 5 application deployment descriptors must conform to this
XML Schema definition.

221

222

The deployment descriptor must be named META-INF/application.xml inthe
.ear file. Note that this name is case-sensitive.

Figure EE.A-1 shows a graphic representation of the structure of the Java EE
application XML Schema.

description*

display-name*

small-icon?
icon*
large-icon?

connector | ejb | java | web |—E

application |—

module+
alt-dd?

description*
security-role*

role-name

library-directory?

11 G

FigureEE.A-1 Java EE Application XML Schema Structure

The XML Schemalocated at http://java.sun.com/xml1/ns/javaee/
application_5.xsd definesthe XML grammar for a Java EE application
deployment descriptor.

EE.A.2 Common Java EE 5 XML Schema Definitions
The XML Schemalocated at http://java.sun.com/xml1/ns/javaee/
javaee_5.xsd definestypesthat are used by many other Java EE deployment
descriptor schemas, both in this specification and in other specifications.
EE.A.3 Java EE 5 Application Client XML Schema
The XML grammar for a Java EE application client deployment descriptor is
defined by the Java EE application-client schema. The root element of the

deployment descriptor for an application clientisapp1ication-client. The content
of the XML elementsisin general case sensitive. This means, for example, that

Final Release

223

<res-auth>Container</res-auth> must be used, rather than <res-
auth>container</res-auth>.

All valid application-client deployment descriptors must conform to the
XML Schema definition, or to aDTD or schema definition from a previous
version of this specification. (See Appendix EE.A, “Previous Version
Deployment Descriptors.”) The deployment descriptor must be named META-INF/
application-client.xml inthe application client’s . jar file. Note that this name
iS case-sensitive.

Figure EE.A-2 shows the structure of the Java EE application-client XML
Schema. The Java EE application-client XML Schemaislocated at http://

java.sun.com/xml/ns/javaee/application-client_5.xsd.

224

small-icon?
large-icon?

display-name+

—| icon* I

env-entry-name

injection-target-class
injection-target-name

: home? I
-I remote? I

description*

res-ref-name
res-type?

res-sharing-scope?

injection-target-class

resource-ref*

injection-target-name

mapped-name?

|mecnon-largel-name

resource-env-ref-name

injection-target*

Figure EE.A-2

Final Release

Iresourc en type? I

mapped-name? I

—| resourct I|

description* I

injection-target-class
injection-target-name

display-name+ injection-target*

message-destination*

description*

message-destination-name I

message-destination-ref-name
ati

—| message-destination-ref* I

injection-target-class
injection-target-name

persistence-unit-ref-name

—| persistence-unit-ref* persistence-unit-name? I

injection-target*

injection-target-class

injection-target-name

lifecycle-callback-class?

post-construct*

ifecycle-callback-method

pre-destroy*

lifecycle-callback-method

Java EE Application Client XML Schema Structure

225

EE.A4 J2EE 1.4 Application XML Schema

This section provides the XML Schema for the J2EE application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the J2EE: appTication schema The granularity of composition for J2EE
application assembly isthe J2EE module. A 12EE:app1ication deployment
descriptor contains a name and description for the application and the URI of a Ul
icon for the application, aswell alist of the J2EE modules that comprise the
application. The content of the XML elementsisin general case sensitive. This
means, for example, that <role-name>Manager</role-name> isadifferent role than
<role-name>manager</role-name>.

A valid J2EE application deployment descriptors may conform to the XML
Schema definition below. The deployment descriptor must be named META-INF/
application.xml inthe .ear file. Note that this nameis case-sensitive.

Figure EE.A-3 shows a graphic representation of the structure of the J2EE
application XML Schema.

—| description*

display-name+

— small-icon?

— icon*

—— large-icon?

application |— web-uri
— connector | ejb* | java | web

[1

— module+

context-root?

— alt-dd?

— description*

— security-role*

—— role-name

Figure EE.A-3 J2EE Application XML Schema Structure

The XML Schemathat definesthe XML grammar for a J2EE 1.4 application
deployment descriptor islocated at http://java.sun.com/xml/ns/j2ee/
application_1_4.xsd.

226

EE.A5 Common J2EE 1.4 XML Schema Definitions

The XML Schemathat defines types that are used by many other J2EE 1.4
deployment descriptor schemas, both in this specification and in other
specifications, islocated a http://java.sun.com/xml/ns/j2ee/j2ee_1_4.xsd.

EE.A.6 J2EE:application 1.3 XML DTD

This section providesthe XML DTD for the J2EE 1.3 application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the 32EE:app1ication document type definition. The granularity of
composition for J2EE application assembly is the J2EE module. A
J2EE:application deployment descriptor contains a name and description for the
application and the URI of a Ul icon for the application, aswell asalist of the 2EE
modules that comprise the application. The content of the XML elementsisin
genera case sensitive. This means, for example, that <role-name>Manager</role-
name> isadifferent rolethan <role-name>manager</role-name>.

A valid J2EE 1.3 application deployment descriptor may contain the
following DOCTY PE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">

The deployment descriptor must be named META-INF/application.xml inthe .ear
file.

Figure EE.A-4 shows a graphic representation of the structure of the
J2EE:application XML DTD.

Final Release

| icon ||display-name || description? || module+ || security-role*
| small-icon | | large-icon | | connector | ejb | java | web | | alt-dd? | | description? | | role-name |

|Web—uri | | context-root? |

Figure EE.A-4 J2EE:application XML DTD Structure

The DTD that defines the XML grammar for a J2EE 1.3 application
deployment descriptor isavailable at http://java.sun.com/dtd/
application_1_3.dtd.

EE.A.7 J2EE:application 1.2 XML DTD

This section providesthe XML DTD for the J2EE 1.2 version of the application
deployment descriptor. A valid J2EE 1.2 application deployment descriptor may
contain the following DOCTY PE declaration:

<!DOCTYPE appTlication PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN" "http://java.sun.com/j2ee/dtds/
application_1_2.dtd">

Figure EE.A-5 shows a graphic representation of the structure of the
J2EE:application XML DTD.

227

228

application

icon? display-name description? module+ security-role*
T S
small-icon? | | large-icon? ejb | ja\lla | web alt-dd?I description? role-name
/_‘_\
web-uri context-root
FigureEE.A-5 J2EE:application XML DTD Structure

The DTD that definesthe XML grammar for a J2EE 1.2 application
deployment descriptor isavailable at http://java.sun.com/j2ee/dtds/
application_1_2.dtd.

EE.A.8 J2EE 1.4 Application Client XML Schema

The XML grammar for a J2EE application client deployment descriptor is defined
by the J2EE application-client schema. The root el ement of the deployment
descriptor for an application clientisappl1ication-client. The content of the XML
elementsisin genera case sensitive. This means, for example, that <res-
auth>Container</res-auth> must be used, rather than <res-auth>container</
res-auth>.

A valid application-client deployment descriptors may conform to the
following XML Schema definition. The deployment descriptor must be named
META-INF/application-client.xm1 inthe application client’s . jar file. Note that
this name is case-sensitive.

Figure EE.A-6 shows the structure of the J2EE 1.4 application-client XML
Schema, which isavailable at http://java.sun.com/xm1/ns/j2ee/application-
client_1_4.xsd.

Final Release

display-name+

small-icon?

I icon* |

large-icon?

description*

env-entry-name

—| env-entry* I

|

env-entry-type

env-entry-value?
description*

ejb-ref-name

ejb-ref-type

ejb-ref*

resource-ref*

home

remote

ejb-link?
description*

res-ref-name

TG

res-type

res-auth

il

res-sharing-scope? |

description*

|
—| resource-env-ref* I

—l message-destination-ref* |—

callback-handler?

resource-env-ref-name |

{1

resource-env-ref-type |

description*

message-destination-ref-name |

—| message-destination-type |
—| message-destination-usage |

—| message-destination-link? |

description*

display-name+

I message-destination* I

icon*

i

|

message-destination-name

229

230

FigureEE.A-6 J2EE Application Client XML Schema Structure

EE.A.9 J2EE:application-client 1.3 XML DTD

This section describesthe XML DTD for the J2EE 1.3 version of the application
client deployment descriptor. The XML grammar for a J2EE application client
deployment descriptor is defined by the J2EE: application-cTient document type
definition. Theroot e ement of the deployment descriptor for an application clientis
application-client. The content of the XML elementsisin general case sensitive.
This means, for example, that <res-auth>Container</res-auth> must be used,
rather than <res-auth>container</res-auth>.

A valid application-client deployment descriptor may contain the
following DOCTY PE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD
J2EE Application Client 1.3//EN" "http://java.sun.com/dtd/
application-client_1_3.dtd">

The deployment descriptor must be named META-INF/application-client.xml in
the application client’s . jar file.

Figure EE.A-7 shows the structure of the 12EE:application-client XML
DTD, whichisavailable at http://java.sun.com/dtd/application-

client_1_3.dtd.
]

icon |display-nam | |description | |env-entry*| |ejb—ref*| |resource-ref*| |resource-env-ref*| |ca||back-hand|er |
e ? ?

small-icon [I] large-ico
|

[I I
|description | |env-emry-name| |env-entry-type | |env-entry-value? |

|]]
|descr.|pt|on | |ejb—re:nam | |ejb—ref-type | |hc;m | |remote| |ejb-.I|nk |

|descripti0n | |res-ref—name| |res-type| |res-aut | |res-sharing—scope |
? tr ?

| description | |resource-env-ref-name | |resource-env-ref—type |

Figure EE.A-7 J2EE:application-client XML DTD Structure

Final Release

231

EE.A.10 J2EE:application-client 1.2 XML DTD

This section describesthe XML DTD for the J2EE 1.2 version of the application
client deployment descriptor. A valid application client deployment descriptor may
contain the following DOCTY PE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD
J2EE Application Client 1.2//EN" "http://java.sun.com/j2ee/dtds/ap-
plication-client_1_2.dtd">

Figure EE.A-8 shows the structure of the J2EE:application-client XML
DTD, whichisavailable at http://java.sun.com/j2ee/dtds/application-
client_1_2.dtd.

application-client

icon?| display-name description? env-entry* ejb-ref* resource-ref*

T

small-icon? | | large-icon?

description? [||env-entry-name env-entry-type env-entry-value?

description? | |ejb-ref-name ejb-ref-type home | [remote ||| ejb-link?

description? res-ref-name res-type res-auth

Figure EE.A-8 J2EE:application-client XML DTD Structure

232

Final Release

cerenon EE.B

Revision History

EE.B.1 Changesin Expert Draft 1

EEB.1.1 Additional Requirements

» JavaEE 6 requires Java SE 6.

» Added Section EE.8.3, “Class L oading Requirements.” to collect and more
clearly specify the requirements around class loading.

e Many updates to Chapter EE.6, “Application Programming Interface” to list
new Java technologiesincluded in Java EE 6, to update required versions of
technologies, and to describe the pruning process.

EE.B.1.2 Removed Requirements
* None.
EE.B.1.3 Editorial Changes

* Clarified Class-Path header requirements by reference to the JAR File Speci-
fication. See Section EE.8.2.1, “Bundled Libraries”

» Added reference to web service references in Section EE.5.6, “Web Service
References.”

« Clarified that PostConstruct and PreDestroy methods can also be specified us-
ing deployment descriptor entries. See Section EE.5.2.5, “Annotations and In-
jection.”

233

234

Simplified JDBC requirementsin Section EE.6.2.4.2, “JDBC™ API” by re-
ferring to the JDBC 4.0 specification.

Removed the JavaBeans Activation Framework from Chapter EE.6, “Appli-
cation Programming Interface” becauseit isincluded in Java SE 6 and this
specification includes no additional requirements. The effective requirements
for the JavaBeans Activation Framework are unchanged from previous releas-
es but are now included in the Java SE specification instead of the Java EE
specification.

EE.B.2 Changesin Expert Draft 2

EE.B.2.1 Additional Requirements

Simple environment entries can also be of type Class or Enum. See

Section EE.5.4, “ Simple Environment Entries.”

Updated Section EE.6.25, “Common Annotations for the Java™ Platform 1.1
Requirements” to reflect that the web container is now required to support the
RolesAllowed, PermitA11, and DenyA11 annotations. The Servlet specification
and the JAX-RS specification contain the details.

EE.B.2.2 Removed Requirements
* None.
EE.B.2.3 Editorial Changes

Further clarified requirements in Section EE.8.3, “Class Loading Require-
ments” to match updates to the Connector specification.

Fixed typo in example in Section EE.8.2.6, “Examples”

Updated technology version numbers to be consistent throughout the specifi-
cation.

Updated Appendix EE.C, “Related Documents.”

Updated recommended technique in Section EE.8.2.5, “Dynamic Class L oad-
ing” to work in some environments where class loader delegation doesn’t
work as expected.

Final Release

235

EE.B.3 Changesin Early Draft

EE.B.3.1 Additional Requirements

» Added Chapter EE.9, “Profiles’.

» Updated several sections throughout the document to make requirements con-
ditional on the presence of a specific technology in a profile.

EE.B.3.2 Removed Requirements
* None.
EE.B.3.3 Editorial Changes

« Clarified optionality of the security manager for application clients
(Section EE.3.4.4, “ Application Client User Authentication™).

EE.B.4 Changesin Public Draft

EE.B.4.1 Additional Requirements
» Added EJB 3.1 Entity Beans and JAXR 1.0 to the list of technol ogies marked
as “proposed optional” in Section EE.6.1, “Required APIs.

» Added JAX-RS 1.1 to thelist of required technologiesin Section EE.6.1, “Re-
quired APIs.

» Updated required JACC versionto 1.2 in Section EE.6.1, “Required APIs.

236

EE.B.4.2 Removed Requirements
* None.
EE.B.4.3 Editorial Changes

Fleshed out Section EE.6.20, “ Java™ Authentication Service Provider Inter-

face for Containers (JASPIC) 1.0 Requirements.

Fleshed out Section EE.6.30, “ Contexts and Dependency I njection for the Java
EE Platform 1.0 Requirements.

EE.B.5 Changesin Proposed Final Draft

EE.B.5.1 Additional Requirements

Defined new JNDI namespacesin Section EE.5.2.2, “Application Component
Environment Namespaces.”

Defined application name and module name resources in Section EE.5.15,
“Application Name and Module Name References’ and corresponding de-
ployment requirements in Chapter EE.8, “Application Assembly and Deploy-
ment.”

Added <initialize-in-order> element to application deployment descrip-
tor; see Section EE.8.6, “ Java EE Application XML Schema.”

Added Bean Validation 1.0 to the list of required technologiesin

Section EE.6.1, “Required APIS’, and added the corresponding requirements
section as Section EE.6.27, “Bean Validation 1.0 Requirements”.

Added injection of validator and ValidatorFactory Objects as

Section EE.5.16, “Validator and Validator Factory References’.

Updated Expression Language versionto 1.2 in Table EE.6-1in

Section EE.6.1, “Required APIs.

Updated required JACC version to 1.3 in Section EE.6.1, “Required APIs.
Added Managed Beans 1.0 to the list of required technologiesin

Section EE.6.1, “Required APIS’, and added the corresponding requirements
section as Section EE.6.28, “Managed Beans 1.0 Requirements”.

Final Release

237

» Added managed beans to the list of components supporting injection in
Section EE.5.2.5, “Annotations and Injection”.

» Added Section EE.5.17, “ DataSource Resource Definition”.

» Added requirements on Bean Validation deployment descriptors to
Section EE.5.16, “Validator and Validator Factory References’.

» Added JSR-330 1,0 to the list of required technologiesin Section EE.6.1,
“Required APIs’” and added the corresponding requirements as
Section EE.6.33, “JSR-330 1.0 Requirements”.

» Added Interceptors 1.1 to the list of required technologiesin Section EE.6.1,
“Required APIS’ and added the corresponding requirements as
Section EE.6.29, “Interceptors 1.1 Requirements”.

» Added Section EE.5.18, “Managed Bean References".

» Added requirements for the Tookup annotation element of the @Resource an-
notation and the corresponding 1ookup-name deployment descriptor element
in Chapter EE.5, “Resources, Naming, and Injection”.

» Added Section EE.5.20, “ Support for Dependency Injection (JSR-330)".

EE.B.5.2 Removed Requirements

» Removed the requirement in Section EE.4.2.2, “ Transactionsin Web Compo-
nent Life Cycles’ that the transaction context propagate out of a servlet called

238

viathe RequestDispatcher, reflecting the reality that containers have imple-
mented this differently.

» Removed JAX-RS root resource classes and providers from the list of compo-
nent classes supporting injection in Table EE.5-1.

EE.B.5.3 Editorial Changes.

» Added clarifications about obtaining the correct InitialContext implementa
tion to sections 5.3.1 and 5.3.4.

* Clarified that java:comp/ORB is optional in all Java EE profilesin
Section EE.9.6, “Optional Features for Java EE Profiles’.

* Clarified application client module initialization requirementsin
Section EE.8.5.4, “Module Initidization®.

EE.B.6 Changesin Final Release

EE.B.6.1 Additional Requirements

» Added injection of BeanManager instances as Section EE.5.19, “Bean Manag-
er References’.
» Updated required JACC version to 1.4 in Section EE.6.1, “Required APIs.

» Updated required version of Web Services Metadatato 2.1 in Section EE.6.1,
“Required APIs.

Final Release

239

EE.B.6.2 Removed Requirements
* None
EE.B.6.3 Editorial Changes.

Updated terminology to use“ CDI” instead of “ JSR-299” and “ Dependency In-
jection” or “DI” instead of JSR-330 throughout the document.

Updated Expression Language version number to reflect the correct one (2.2)
in Table EE.6-1 in Section EE.6.1, “Required APlIs.

* Removed StAX 1.0 and SAAJ 1.3 from the list of required APIsin

Section EE.6.1, “Required APIS’, since they are both already included in Java
SE 6.

Changed terminology from “bean deployment archive’ to “bean archive’, so

asto align with the latest CDI specification.

240

Final Release

corenon 2E.C

Related Documenté

T his specification refers to the following documents. The terms used to refer to
the documents in this specification are included in parentheses.

Java™ Platform, Enterprise Edition Specification Version 6 (this
specification). Available at http://java.sun.com/javaee.

Java™ 2 Platform, Enterprise Edition Technical Overview (J2EE
Overview). Available at http://java.sun.com/javaee/overview/
whitepapers/index. jsp.

Java™ Platform, Standard Edition, v6 API Specification (Java SE
specification). Available at http://java.sun.com/javase/6/docs/api/
index.html.

Enterprise JavaBeans™ Specification, Version 3.1 (EJB specification).
Available at http://java.sun.com/products/ejb.

JavaServer Pages™ Specification, Version 2.2 (JSP specification).
Available at http://java.sun.com/products/jsp.

Expression Language Specification, Version 2.2 (EL specification).
Available at http://jcp.org/en/jsr/detail?id=245.

Common Annotations for the Java Platform Specification 1.1. Available at
http://jcp.org/en/jsr/detail?id=250.

Java™ Servlet Specification, Version 3.0 (servlet specification). Available
at http://java.sun.com/products/serviet.

JDBC™ 3.0 API (JDBC specification). Available at http://java.sun.com/
products/jdbc.

241

242

Java™ Naming and Directory Interface 1.2 Specification (JNDI
specification). Available at http://java.sun.com/products/jndi.

Java™ Message Service, Version 1.1 (JMS specification). Available at
http://java.sun.com/products/jms.

Java™ Transaction API, Version 1.1 (JTA specification). Available at
http://java.sun.com/products/jta.

Java™ Transaction Service, Version 1.0 (JTS specification). Available at
http://java.sun.com/products/jts.

JavaMail™ API Specification Version 1.4 (JavaMail specification).
Available at http://java.sun.com/products/javamail.

JavaBeans™ Activation Framework Specification Version 1.1 (JAF
specification). Available at http://java.sun.com/beans/glasgow/
jaf.html.

Java EE™ Connector Architecture 1.6 (Connector specification).
Available at http://java.sun.com/j2ee/connector.

Java™ API for XML Processing, Version 1.3 (JAXP specification).
Available at http://java.sun.com/xm1.

Web Services for Java EE 1.3 (Web Services specification). Available at
http://jcp.org/en/jsr/detail?id=109.

Java™ API for XML-based Web Services 2.2 (JAX-WS specification).
Available at http://java.sun.com/webservices/jaxws.

Java™ API for XML-based RPC 1.1 (JAX-RPC specification). Available

a http://java.sun.com/webservices/jaxrpc.

Java™ Architecture for XML Binding 2.2 (JAXB specification). Available
al http://java.sun.com/webservices/jaxb.

SOAP with Attachments API for Java™ 1.3 (SAAJ specification).
Available at http://java.sun.com/xml1/saaj.

Java™ API for XML Registries 1.0 (JAXR specification). Available at
http://java.sun.com/xml/jaxr.

JAX-RS The JavaTM API for RESTful Web Services (JAX-RS
specification). Available at http://jcp.org/jsr/detail/311.jsp.

Final Release

Java™ Platform, Enterprise Edition Management Specification 1.1 (Java
EE Management specification). Available at http://jcp.org/jsr/
detail/77.jsp.

Java™ Platform, Enterprise Edition Deployment Specification 1.2 (Java
EE Deployment specification). Available at http://jcp.org/jsr/
detail/88.jsp.

Java™ Management Extensions 1.2 (JM X specification). Available at
http://java.sun.com/products/JavaManagement/.

Java™ Authorization Service Provider Contract for Containers 1.4 (JACC
specification). Available at http://jcp.org/jsr/detail/115.jsp.

Java™ Authentication Service Provider Interface for Containers 1.0
(JASPIC specification). Available at http://jcp.org/jsr/detail/
196.jsp.

Java™ Authentication and Authorization Service (JAAS) 1.0 (JAAS
specification). Available at http://java.sun.com/products/jaas.

Debugging Support for Other Languages 1.0. Available at http://
jcp.org/en/jsr/detail?id=45.

Standard Tag Library for JavaServer Pages 1.2 (JSTL specification).
Available at http://jcp.org/en/jsr/detail?id=52.

Web Services Metadata for the Java Platform 2.0. Available at http://
jcp.org/en/jsr/detail?id=181.

JavaServer Faces 2.0 (JSF specification). Available at http://jcp.org/en/
jsr/detail?id=314.

Streaming API for XML 1.0 (StAX specification). Available at http://
jcp.org/en/jsr/detail?id=173.

Java Persistence 2.0 (Java Persistence specification). Available at http://
jcp.org/en/jsr/detail?id=317.

Bean Validation 1.0 (Bean Validation specification). Available at http://
jcp.org/en/jsr/detail?id=303.

Managed Beans 1.0 (Managed Beans specification). Available at http://
jcp.org/en/jsr/detail?id=316.

243

244

Interceptors 1.1 (Interceptors specification). Available at http://jcp.org/
en/jsr/detail?id=318.

Contexts and Dependency Injection for the Java EE Platform 1.0 (CDI
specification). Available at http://jcp.org/en/jsr/detail?id=299.

Dependency Injection for Java 1.0 (DI specification). Available at http://
jcp.org/en/jsr/detail?id=330.

Extension Mechanism Architecture, Available at http://java.sun.com/
javase/6/docs/technotes/guides/extensions/index.html.

Optional Package Versioning, Available at http://java.sun.com/javase/
6/docs/technotes/guides/extensions/index.html.

JAR File Specification, Available at http://java.sun.com/javase/6/docs/
technotes/guides/jar/jar.html.

The Common Object Request Broker: Architecture and Specification
(CORBA 2.3.1 specification), Available at http://www.omg.org/cgi-
bin/doc?formal/99-10-07.

CORBA 2.6 - Chapter 26 - Secure Interoperability, Available at http://
www.omg.org/cgi-bin/doc?formal/01-12-30.

IDL To Java™ Language Mapping Specification, Available at http://
www.omg.org/cgi-bin/doc?ptc/2000-01-08.

Java™ Language To IDL Mapping Specification, Available at http://
www.omg.org/cgi-bin/doc?ptc/2000-01-06.

Interoperable Naming Service, Available at http://www.omg.org/cgi-bin/
doc?ptc/00-08-07.

Transaction Service Specification (OTS specification), Available at http:/
/www.omg.org/cgi-bin/doc?formal/2001-11-03.

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise
Edition, Available at http://java.sun.com/reference/blueprints.

The SSL Protocol, Version 3.0. Available at http://home.netscape.com/
eng/ss13.

Fina Release

245

Architectural Styles and the Design of Network-based Software
Architectures (REST), R. Fielding, Ph.d dissertation, University of
Cdlifornia, Irvine, 2000. Available at http://roy.gbiv.com/pubs/
dissertation/top.htm.

Java™ Community Process™ 2: Process Document, Version 2.6 (March 9,
2004). Available at http://jcp.org/en/procedures/jcp2.

246

Final Release

247

N
We make the net work.

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, California 95054, U.S.A.
650 960-1300

For U.S. Sales Office locations, cal:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551

Japan: (03) 5717-5000
Korea: 822-563-8700

Latin America: 650 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388

Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

650 960-1300

Intercontinental Sales. 650 688-9000

	Java™ Platform, Enterprise Edition (Java EE) Specification, v6
	Introduction
	EE.1.1 Acknowledgements
	EE.1.2 Acknowledgements for Version 1.3
	EE.1.3 Acknowledgements for Version 1.4
	EE.1.4 Acknowledgements for Version 5
	EE.1.5 Acknowledgements for Version 6

	Platform Overview
	EE.2.1 Architecture
	EE.2.2 Profiles
	EE.2.3 Application Components
	EE.2.3.1 Java EE Server Support for Application Components

	EE.2.4 Containers
	EE.2.4.1 Container Requirements
	EE.2.4.2 Java EE Servers

	EE.2.5 Resource Adapters
	EE.2.6 Database
	EE.2.7 Java EE Standard Services
	EE.2.7.1 HTTP
	EE.2.7.2 HTTPS
	EE.2.7.3 Java™ Transaction API (JTA)
	EE.2.7.4 RMI-IIOP
	EE.2.7.5 Java IDL
	EE.2.7.6 JDBC™ API
	EE.2.7.7 Java™ Persistence API
	EE.2.7.8 Java™ Message Service (JMS)
	EE.2.7.9 Java Naming and Directory Interface™ (JNDI)
	EE.2.7.10 JavaMail™
	EE.2.7.11 JavaBeans™ Activation Framework (JAF)
	EE.2.7.12 XML Processing
	EE.2.7.13 Java EE™ Connector Architecture
	EE.2.7.14 Security Services
	EE.2.7.15 Web Services
	EE.2.7.16 Management
	EE.2.7.17 Deployment

	EE.2.8 Interoperability
	EE.2.9 Flexibility of Product Requirements
	EE.2.10 Java EE Product Extensions
	EE.2.11 Platform Roles
	EE.2.11.1 Java EE Product Provider
	EE.2.11.2 Application Component Provider
	EE.2.11.3 Application Assembler
	EE.2.11.4 Deployer
	EE.2.11.5 System Administrator
	EE.2.11.6 Tool Provider
	EE.2.11.7 System Component Provider

	EE.2.12 Platform Contracts
	EE.2.12.1 Java EE APIs
	EE.2.12.2 Java EE Service Provider Interfaces (SPIs)
	EE.2.12.3 Network Protocols
	EE.2.12.4 Deployment Descriptors and Annotations

	EE.2.13 Changes in J2EE 1.3
	EE.2.14 Changes in J2EE 1.4
	EE.2.15 Changes in Java EE 5
	EE.2.16 Changes in Java EE 6

	Security
	EE.3.1 Introduction
	EE.3.2 A Simple Example
	EE.3.3 Security Architecture
	EE.3.3.1 Goals
	EE.3.3.2 Non Goals
	EE.3.3.3 Terminology
	EE.3.3.4 Container Based Security
	EE.3.3.4.1 Declarative Security
	EE.3.3.4.2 Programmatic Security

	EE.3.3.5 Distributed Security
	EE.3.3.6 Authorization Model
	EE.3.3.6.1 Role Mapping

	EE.3.3.7 HTTP Login Gateways
	EE.3.3.8 User Authentication
	EE.3.3.8.1 Authentication by Web Clients
	EE.3.3.8.2 Web Single Signon
	EE.3.3.8.3 Login Session
	EE.3.3.8.4 Authentication by Application Clients

	EE.3.3.9 Lazy Authentication

	EE.3.4 User Authentication Requirements
	EE.3.4.1 Login Sessions
	EE.3.4.2 Required Login Mechanisms
	EE.3.4.2.1 HTTP Basic Authentication
	EE.3.4.2.2 SSL Mutual Authentication
	EE.3.4.2.3 Form Based Login

	EE.3.4.3 Unauthenticated Users
	EE.3.4.4 Application Client User Authentication
	EE.3.4.5 Resource Authentication Requirements

	EE.3.5 Authorization Requirements
	EE.3.5.1 Code Authorization
	EE.3.5.2 Caller Authorization
	EE.3.5.3 Propagated Caller Identities.
	EE.3.5.4 Run As Identities

	EE.3.6 Deployment Requirements
	EE.3.7 Future Directions
	EE.3.7.1 Auditing
	EE.3.7.2 Instance-based Access Control
	EE.3.7.3 User Registration

	Transaction Management
	EE.4.1 Overview
	EE.4.2 Requirements
	EE.4.2.1 Web Components
	EE.4.2.1.1 Transaction Requirements
	EE.4.2.1.2 Transaction Non-Requirements

	EE.4.2.2 Transactions in Web Component Life Cycles
	EE.4.2.3 Transactions and Threads
	EE.4.2.4 Enterprise JavaBeans™ Components
	EE.4.2.5 Application Clients
	EE.4.2.6 Applet Clients
	EE.4.2.7 Transactional JDBC™ Technology Support
	EE.4.2.8 Transactional JMS Support
	EE.4.2.9 Transactional Resource Adapter (Connector) Support

	EE.4.3 Transaction Interoperability
	EE.4.3.1 Multiple Java EE Platform Interoperability
	EE.4.3.2 Support for Transactional Resource Managers

	EE.4.4 Local Transaction Optimization
	EE.4.4.1 Requirements
	EE.4.4.2 A Possible Design

	EE.4.5 Connection Sharing
	EE.4.6 JDBC and JMS Deployment Issues
	EE.4.7 Two-Phase Commit Support
	EE.4.8 System Administration Tools

	Resources, Naming, and Injection
	EE.5.1 Overview
	EE.5.1.1 Chapter Organization
	EE.5.1.2 Required Access to the JNDI Naming Environment

	EE.5.2 JNDI Naming Context
	EE.5.2.1 The Application Component’s Environment
	EE.5.2.2 Application Component Environment Namespaces
	EE.5.2.3 Accessibility of Environment Entry Types
	EE.5.2.4 Sharing of Environment Entries
	EE.5.2.5 Annotations and Injection
	EE.5.2.6 Annotations and Deployment Descriptors
	EE.5.2.7 Other Naming Context Entries

	EE.5.3 Responsibilities by Java EE Role
	EE.5.3.1 Application Component Provider’s Responsibilities
	EE.5.3.2 Application Assembler’s Responsibilities
	EE.5.3.3 Deployer’s Responsibilities
	EE.5.3.4 Java EE Product Provider’s Responsibilities

	EE.5.4 Simple Environment Entries
	EE.5.4.1 Application Component Provider’s Responsibilities
	EE.5.4.1.1 Injection of Simple Environment Entries
	EE.5.4.1.2 Programming Interfaces for Accessing Simple Environment Entries
	EE.5.4.1.3 Declaration of Simple Environment Entries

	EE.5.5 Enterprise JavaBeans™ (EJB) References
	EE.5.5.1 Application Component Provider’s Responsibilities
	EE.5.5.1.1 Injection of EJB Entries
	EE.5.5.1.2 Programming Interfaces for EJB References
	EE.5.5.1.3 Declaration of EJB References

	EE.5.5.2 Application Assembler’s Responsibilities
	EE.5.5.3 Deployer’s Responsibilities
	EE.5.5.4 Java EE Product Provider’s Responsibilities

	EE.5.6 Web Service References
	EE.5.7 Resource Manager Connection Factory References
	EE.5.7.1 Application Component Provider’s Responsibilities
	EE.5.7.1.1 Injection of Resource Manager Connection Factory References
	EE.5.7.1.2 Programming Interfaces for Resource Manager Connection Factory References
	EE.5.7.1.3 Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	EE.5.7.1.4 Standard Resource Manager Connection Factory Types

	EE.5.7.2 Deployer’s Responsibilities
	EE.5.7.3 Java EE Product Provider’s Responsibilities
	EE.5.7.4 System Administrator’s Responsibilities

	EE.5.8 Resource Environment References
	EE.5.8.1 Application Component Provider’s Responsibilities
	EE.5.8.1.1 Injection of Resource Environment References
	EE.5.8.1.2 Resource Environment Reference Programming Interfaces
	EE.5.8.1.3 Declaration of Resource Environment References in Deployment Descriptor

	EE.5.8.2 Deployer’s Responsibilities
	EE.5.8.3 Java EE Product Provider’s Responsibilities

	EE.5.9 Message Destination References
	EE.5.9.1 Application Component Provider’s Responsibilities
	EE.5.9.1.1 Injection of Message Destination References
	EE.5.9.1.2 Message Destination Reference Programming Interfaces
	EE.5.9.1.3 Declaration of Message Destination References in Deployment Descriptor

	EE.5.9.2 Application Assembler’s Responsibilities
	EE.5.9.3 Deployer’s Responsibilities
	EE.5.9.4 Java EE Product Provider’s Responsibilities

	EE.5.10 UserTransaction References
	EE.5.10.1 Application Component Provider’s Responsibilities
	EE.5.10.2 Java EE Product Provider’s Responsibilities

	EE.5.11 TransactionSynchronizationRegistry References
	EE.5.11.1 Application Component Provider’s Responsibilities
	EE.5.11.2 Java EE Product Provider’s Responsibilities

	EE.5.12 ORB References
	EE.5.12.1 Application Component Provider’s Responsibilities
	EE.5.12.2 Java EE Product Provider’s Responsibilities

	EE.5.13 Persistence Unit References
	EE.5.13.1 Application Component Provider’s Responsibilities
	EE.5.13.1.1 Injection of Persistence Unit References
	EE.5.13.1.2 Programming Interfaces for Persistence Unit References
	EE.5.13.1.3 Declaration of Persistence Unit References in Deployment Descriptor

	EE.5.13.2 Application Assembler’s Responsibilities
	EE.5.13.3 Deployer’s Responsibility
	EE.5.13.4 Java EE Product Provider’s Responsibility
	EE.5.13.5 System Administrator’s Responsibility

	EE.5.14 Persistence Context References
	EE.5.14.1 Application Component Provider’s Responsibilities
	EE.5.14.1.1 Injection of Persistence Context References
	EE.5.14.1.2 Programming Interfaces for Persistence Context References
	EE.5.14.1.3 Declaration of Persistence Context References in Deployment Descriptor

	EE.5.14.2 Application Assembler’s Responsibilities
	EE.5.14.3 Deployer’s Responsibility
	EE.5.14.4 Java EE Product Provider’s Responsibility
	EE.5.14.5 System Administrator’s Responsibility

	EE.5.15 Application Name and Module Name References
	EE.5.15.1 Application Component Provider’s Responsibilities
	EE.5.15.2 Java EE Product Provider’s Responsibilities

	EE.5.16 Validator and Validator Factory References
	EE.5.16.1 Application Component Provider’s Responsibilities
	EE.5.16.2 Java EE Product Provider’s Responsibilities

	EE.5.17 DataSource Resource Definition
	EE.5.17.1 Application Component Provider’s Responsibilities
	EE.5.17.2 Java EE Product Provider’s Responsibilities

	EE.5.18 Managed Bean References
	MB.5.18.1 Application Component Provider’s Responsibilities
	MB.5.18.2 Java EE Product Provider’s Responsibilities

	EE.5.19 Bean Manager References
	EE.5.19.1 Application Component Provider’s Responsibilities
	EE.5.19.2 Java EE Product Provider’s Responsibilities

	EE.5.20 Support for Dependency Injection (JSR-330)

	Application Programming Interface
	EE.6.1 Required APIs
	EE.6.1.1 Java Compatible APIs
	EE.6.1.2 Required Java Technologies
	EE.6.1.3 Pruned Java Technologies

	EE.6.2 Java Platform, Standard Edition (Java SE) Requirements
	EE.6.2.1 Programming Restrictions
	EE.6.2.2 The Java EE Security Permissions Set
	EE.6.2.3 Listing of the Java EE Security Permissions Set
	EE.6.2.4 Additional Requirements
	EE.6.2.4.1 Networking
	EE.6.2.4.2 JDBC™ API
	EE.6.2.4.3 Java IDL
	EE.6.2.4.4 RMI-JRMP
	EE.6.2.4.5 RMI-IIOP
	EE.6.2.4.6 JNDI
	EE.6.2.4.7 Context Class Loader
	EE.6.2.4.8 Java™ Authentication and Authorization Service (JAAS) Requirements
	EE.6.2.4.9 Logging API Requirements
	EE.6.2.4.10 Preferences API Requirements

	EE.6.3 Enterprise JavaBeans™ (EJB) 3.1 Requirements
	EE.6.4 Servlet 3.0 Requirements
	EE.6.5 JavaServer Pages™ (JSP) 2.2 Requirements
	EE.6.6 Expression Language (EL) 2.2 Requirements
	EE.6.7 Java™ Message Service (JMS) 1.1 Requirements
	EE.6.8 Java™ Transaction API (JTA) 1.1 Requirements
	EE.6.9 JavaMail™ 1.4 Requirements
	EE.6.10 Java EE™ Connector Architecture 1.6 Requirements
	EE.6.11 Web Services for Java EE 1.3 Requirements
	EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements (Proposed Optional)
	EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.2 Requirements
	EE.6.14 Java™ API for RESTful Web Services (JAX-RS) 1.1 Requirements
	EE.6.15 Java™ Architecture for XML Binding (JAXB) 2.2 Requirements
	EE.6.16 Java™ API for XML Registries (JAXR) 1.0 Requirements (Proposed Optional)
	EE.6.17 Java™ Platform, Enterprise Edition Management API 1.1 Requirements
	EE.6.18 Java™ Platform, Enterprise Edition Deployment API 1.2 Requirements (Proposed Optional)
	EE.6.19 Java™ Authorization Service Provider Contract for Containers (JACC) 1.4 Requirements
	EE.6.20 Java™ Authentication Service Provider Interface for Containers (JASPIC) 1.0 Requirements
	EE.6.21 Debugging Support for Other Languages (JSR-45) Requirements
	EE.6.22 Standard Tag Library for JavaServer Pages™ (JSTL) 1.2 Requirements
	EE.6.23 Web Services Metadata for the Java™ Platform 2.1 Requirements
	EE.6.24 JavaServer Faces™ 2.0 Requirements
	EE.6.25 Common Annotations for the Java™ Platform 1.1 Requirements
	EE.6.26 Java™ Persistence API 2.0 Requirements
	EE.6.27 Bean Validation 1.0 Requirements
	EE.6.28 Managed Beans 1.0 Requirements
	EE.6.29 Interceptors 1.1 Requirements
	EE.6.30 Contexts and Dependency Injection for the Java EE Platform 1.0 Requirements
	EE.6.31 Dependency Injection for Java 1.0 Requirements

	Interoperability
	EE.7.1 Introduction to Interoperability
	EE.7.2 Interoperability Protocols
	EE.7.2.1 Internet and Web Protocols
	EE.7.2.2 OMG Protocols
	EE.7.2.3 Java Technology Protocols
	EE.7.2.4 Data Formats

	Application Assembly and Deployment
	EE.8.1 Application Development Life Cycle
	EE.8.1.1 Component Creation
	EE.8.1.2 Application Assembly
	EE.8.1.3 Deployment

	EE.8.2 Library Support
	EE.8.2.1 Bundled Libraries
	EE.8.2.2 Installed Libraries
	EE.8.2.3 Library Conflicts
	EE.8.2.4 Library Resources
	EE.8.2.5 Dynamic Class Loading
	EE.8.2.6 Examples

	EE.8.3 Class Loading Requirements
	EE.8.3.1 Web Container Class Loading Requirements
	EE.8.3.2 EJB Container Class Loading Requirements
	EE.8.3.3 Application Client Container Class Loading Requirements
	EE.8.3.4 Applet Container Class Loading Requirements

	EE.8.4 Application Assembly
	EE.8.4.1 Assembling a Java EE Application
	EE.8.4.2 Adding and Removing Modules

	EE.8.5 Deployment
	EE.8.5.1 Deploying a Stand-Alone Java EE Module
	EE.8.5.2 Deploying a Java EE Application
	EE.8.5.3 Deploying a Library
	EE.8.5.4 Module Initialization

	EE.8.6 Java EE Application XML Schema
	EE.8.7 Common Java EE XML Schema Definitions

	Profiles
	EE.9.1 Introduction
	EE.9.2 Profile Definition
	EE.9.3 General Rules for Profiles
	EE.9.4 Expression of Requirements
	EE.9.5 Requirements for All Java EE Profiles
	EE.9.6 Optional Features for Java EE Profiles
	EE.9.7 Full Java EE Product Requirements

	Application Clients
	EE.10.1 Overview
	EE.10.2 Security
	EE.10.3 Transactions
	EE.10.4 Resources, Naming, and Injection
	EE.10.5 Application Programming Interfaces
	EE.10.6 Packaging and Deployment
	EE.10.7 Java EE Application Client XML Schema

	Service Provider Interface
	EE.11.1 Java™ EE Connector Architecture
	EE.11.2 Java™ Authorization Service Provider Contract for Containers
	EE.11.3 Java™ Transaction API
	EE.11.4 Java™ Persistence
	EE.11.5 Java™ API for XML Web Services
	EE.11.6 JavaMail™

	Compatibility and Migration
	EE.12.1 Compatibility
	EE.12.1.1 JavaServer Pages

	EE.12.2 Migration
	EE.12.2.1 JavaServer Faces
	EE.12.2.2 Java Persistence
	EE.12.2.3 JAX-WS
	EE.12.2.4 Annotations

	Future Directions
	EE.13.1 JNLP (Java™ Web Start)
	EE.13.2 Java EE SPI

	Previous Version Deployment Descriptors
	EE.A.1 Java EE 5 Application XML Schema
	EE.A.2 Common Java EE 5 XML Schema Definitions
	EE.A.3 Java EE 5 Application Client XML Schema
	EE.A.4 J2EE 1.4 Application XML Schema
	EE.A.5 Common J2EE 1.4 XML Schema Definitions
	EE.A.6 J2EE:application 1.3 XML DTD
	EE.A.7 J2EE:application 1.2 XML DTD
	EE.A.8 J2EE 1.4 Application Client XML Schema
	EE.A.9 J2EE:application-client 1.3 XML DTD
	EE.A.10 J2EE:application-client 1.2 XML DTD

	Revision History
	EE.B.1 Changes in Expert Draft 1
	EE.B.1.1 Additional Requirements
	EE.B.1.2 Removed Requirements
	EE.B.1.3 Editorial Changes

	EE.B.2 Changes in Expert Draft 2
	EE.B.2.1 Additional Requirements
	EE.B.2.2 Removed Requirements
	EE.B.2.3 Editorial Changes

	EE.B.3 Changes in Early Draft
	EE.B.3.1 Additional Requirements
	EE.B.3.2 Removed Requirements
	EE.B.3.3 Editorial Changes

	EE.B.4 Changes in Public Draft
	EE.B.4.1 Additional Requirements
	EE.B.4.2 Removed Requirements
	EE.B.4.3 Editorial Changes

	EE.B.5 Changes in Proposed Final Draft
	EE.B.5.1 Additional Requirements
	EE.B.5.2 Removed Requirements
	EE.B.5.3 Editorial Changes.

	EE.B.6 Changes in Final Release
	EE.B.6.1 Additional Requirements
	EE.B.6.2 Removed Requirements
	EE.B.6.3 Editorial Changes.

	Related Documents

