Linux Capabilities: Difference between revisions

From NovaOrdis Knowledge Base
Jump to navigation Jump to search
Line 6: Line 6:


=Overview=
=Overview=
Traditional UNIX implementations distinguish two categories or processes for the purpose of performing permission checks: privileged processes and unprivileged processes. A privileged process is a process with its effective user ID is 0, referred to as superuser or root. An unprivileged process is a process with a non-zero its effective user ID. Privileged processes bypass all kernel permission checks, while unprivileged processes are subject to full permission checking based on the process' credentials: effective UID, effective GID and supplementary group list.
Traditional UNIX implementations distinguish two categories of processes for the purpose of performing permission checks: privileged processes and unprivileged processes. A privileged process is a process with its effective user ID is 0, referred to as superuser or root. An unprivileged process is a process with a non-zero its effective user ID. Privileged processes bypass all kernel permission checks, while unprivileged processes are subject to full permission checking based on the process' credentials: effective UID, effective GID and supplementary group list.


Linux (or kernel) capabilities
Linux (or kernel) capabilities

Revision as of 21:26, 1 March 2021

External

Internal

Overview

Traditional UNIX implementations distinguish two categories of processes for the purpose of performing permission checks: privileged processes and unprivileged processes. A privileged process is a process with its effective user ID is 0, referred to as superuser or root. An unprivileged process is a process with a non-zero its effective user ID. Privileged processes bypass all kernel permission checks, while unprivileged processes are subject to full permission checking based on the process' credentials: effective UID, effective GID and supplementary group list.

Linux (or kernel) capabilities