Financial Data Science Financial Performance Analysis: Difference between revisions
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
# load the DataFrame | # load the DataFrame | ||
df = pd.read_csv("./finances.csv", parse_dates=[" | df = pd.read_csv("./finances.csv", parse_dates=["Date"]) | ||
# make it a time series DataFrame | # make it a time series DataFrame |
Revision as of 22:56, 20 October 2023
Internal
Overview
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ptick
# load the DataFrame
df = pd.read_csv("./finances.csv", parse_dates=["Date"])
# make it a time series DataFrame
df.set_index('date')
# declare the function that converts the dollar amount
def dollar_to_int(s: str):
return int(s[1:].replace(',',''))
# extract a specific time series and plot it
fidelity_self_managed = df[''].apply(dollar_to_int)
# graph
fig, ax = plt.subplots()
fig.autofmt_xdate()
ax.set_ylabel("amount")
ax.yaxis.set_major_formatter(mt.FormatStrFormatter('% 1.2f'))
ax.plot(fidelity_self_managed)
plt.show()