Prim's Algorithm: Difference between revisions

From NovaOrdis Knowledge Base
Jump to navigation Jump to search
Line 13: Line 13:
   Initialize X={s} <font color=teal># X is the set of vertices that we spanned so far
   Initialize X={s} <font color=teal># X is the set of vertices that we spanned so far
                   # s ∈ V chosen arbitrarily</font>
                   # s ∈ V chosen arbitrarily</font>
   Initialize A[s]={0} <font color=teal># A maintains computed shortest path distances from the vertices explored so far to s</font>
   Initialize T=<font color=teal># T is the minimum spanning tree built so far
  Initialize B[s]={empty path} <font color=teal># B maintains the actual shortest path distances from the vertices explored
                # Invariant: X = vertices spanned by the three-so-far T</font>  
                              # so far to s. This is not necessary in the algorithm but helps with the
                              # understanding of the algorithm.</font>
   while X ≠ V: <font color=teal># The main loop, each iteration grows X with one node</font>
   while X ≠ V: <font color=teal># The main loop, each iteration grows X with one node</font>
       for every directed edge (v, w) ∈ E that crosses X/(V-X) boundary v ∈ V, w ∈ V-X
       let e=(u,v) be the cheapest edge of G with u ∈ X, v X
          pick the (v<sup>*</sup>, w<sup>*</sup>) edge that minimizes A[v] + ℓ<sub>vw</sub> <font color=teal># The Dijkstra's Greedy Criterion</font>
       add e to T
       add w<sup>*</sup> to X
       add v to X
       set A[w<sup>*</sup>] = A[v<sup>*</sup>] + ℓ<sub>v<sup>*</sup>w<sup>*</sup></sub>
      set B[w<sup>*</sup>] = B[v<sup>*</sup>] ⋃ (v<sup>*</sup>,w<sup>*</sup>)
</font>
</font>

Revision as of 22:28, 20 October 2021

External

Internal

Overview

Prim's algorithm is a greedy algorithm that computes the minimum cost spanning tree of a an undirected graph. Even if the algorithm was named after Prim, it was discovered earlier by Jarník. The algorithm is similar to Dijkstra's shortest-path algorithm.

Non-Optimized Implementation

The Prim algorithm randomly selects a node. It then enters a loop where at each iteration adds a new edge and spans one new vertex, adjacent to the ones already spanning. The new vertex added to the "explored territory" is selected so it can be reached via the cheapest edge. This is what makes Prim's algorithm a greedy algorithm.

 Initialize X={s} # X is the set of vertices that we spanned so far
                  # s ∈ V chosen arbitrarily
 Initialize T=∅ # T is the minimum spanning tree built so far
                # Invariant: X = vertices spanned by the three-so-far T 
 while X ≠ V: # The main loop, each iteration grows X with one node
     let e=(u,v) be the cheapest edge of G with u ∈ X, v ∉ X
     add e to T
     add v to X