Graph Representation in Memory
Internal
Overview
TODO CLRS page 589, DDIA location 1392.
Graph Input Size
When it comes to graphs, the input size is given by two parameters: the number of vertices (n) and the number of edges (m).
For a connected, undirected graph with n vertices, the number of edges ranges from n - 1 and n (n - 1)/2.
Adjacency Lists
A data structure that keeps track of vertices and edges as independent entities. It has an array (or a list) of vertices and an array (or a list) of edges. These two arrays cross-reference each other. Each edge points to its endpoints. Each vertex points to all of its edges it is a member. Applies to directed and undirected graphs.
An adjacency list representation provides a memory-efficient way of representing sparse graphs, so it is usually the method of choice.
Continue CLRS page 590.
Adjacency Matrices
The edges of a graph are represented using a matrix. Applies to directed and undirected graphs. The matrix is denoted by A, and it is a nxn square matrix, where n is the number of vertices in the graph. The semantics is Aij=1 if and only if there's an edge between vertices i and j in the graph. It can be extended for parallel arcs and weighted graphs. For parallel arcs, Aij denotes the number of edges. For weighted graphs, Aij denotes the weight of the edge. For directed graphs, if the arc is directed from i to j, Aij=+1 and if it is directed from j to i, Aij=-1.
Space requirements: an adjacency matrix requires space quadratic in the number of vertices Θ(n2). For dense graphs this is fine but for sparse graphs, it is wasteful.
Cases when adjacency matrix representation is preferred:
- dense graphs.
- When we need to tell quickly if there is an edge connecting two given vertices.
CLRS page 590.