Karatsuba Multiplication

From NovaOrdis Knowledge Base
Jump to navigation Jump to search

Internal

Time Complexity

In absence of Gauss optimization, the naive recursive algorithm makes 4 recursive calls (a=4), each call on half of the problem (b=2). Upon the exit from recursion, the combine phase performs additions using a number of operations proportional to the size of the current problem, so the combine phase is O(n1) (d=1). a/bd = 4/21 = 2, so we are in Case 3 of the master theorem, and the running time is upper bound by O(nlog24)=O(n2), no better than the straightforward iterative algorithm.

If we apply the Gauss optimization, we reduce the number of recursive calls to 3 (a=3), the rest of the parameters remaining the same. a/bd = 3/21 > 1, so we are also in Case 3 of the master theorem, and the running time complexity is O(nlog23)=O(nlog 3), which is better than O(n2).

TODO

  • problem statement
  • naïve solution
  • Gauss trick
  • complexity
  • Karatsuba: explain the key idea – apply the master theorem to demonstrate that the complexity is still O(n2). The key insight for Karatsuba algorithm is the Gauss’ trick to reduce four sub-parts recursive multiplications to 3, and the complexity is ?

Link to Strassen.

Overview

Apply the Gauss' trick and end up with three recursive calls instead of four. This yields a O(n*logn) complexity. It if was four, the recursive complexity it would have been O(n2).


TODO

Playground

https://github.com/ovidiuf/playground/tree/master/learning/stanford-algorithms-specialization/01-karatsuba
[Next]