Pandas Time Series Resampling and Interpolation: Difference between revisions
Jump to navigation
Jump to search
(Created page with "=Internal= * Series =Overview= For time series, use <code>resample()</code>. The object must have a datetime-like index (<code>DatetimeIndex</c...") |
|||
Line 2: | Line 2: | ||
* [[Pandas_Series#Interpolation|Series]] | * [[Pandas_Series#Interpolation|Series]] | ||
=Overview= | =Overview= | ||
This applies to time series. | |||
To interpolate, resample at the desired frequency with <code>resample()</code>, and then call <code>interpolate()</code>. <font color=darkkhaki>Instead of interpolation, the new elements can be forward filled with <code>pad()</code> or back filled with <code>bfill()</code>, or filled with mean() values, but in that case we get NaNs.</code> | |||
The object must have a datetime-like index (<code>DatetimeIndex</code>, <code>PeriodIndex</code>, <code>TimedeltaIndex</code>) or the caller must pass the label of a date time-like series/index. | |||
<syntaxhighlight lang='py'> | <syntaxhighlight lang='py'> | ||
s.resample("2H"). | s.resample("2H").interpolate() | ||
</syntaxhighlight> | </syntaxhighlight> | ||
<syntaxhighlight lang='py'> | <syntaxhighlight lang='py'> | ||
s.resample("1D"). | s.resample("1D").interpolate() | ||
</syntaxhighlight> | </syntaxhighlight> |
Revision as of 02:27, 21 October 2023
Internal
Overview
This applies to time series.
To interpolate, resample at the desired frequency with resample()
, and then call interpolate()
. Instead of interpolation, the new elements can be forward filled with pad()
or back filled with bfill()
, or filled with mean() values, but in that case we get NaNs.
The object must have a datetime-like index (DatetimeIndex
, PeriodIndex
, TimedeltaIndex
) or the caller must pass the label of a date time-like series/index.
s.resample("2H").interpolate()
s.resample("1D").interpolate()